
 Copyright © 2016 ARM Ltd. ARM Limited or its affiliates. All rights reserved.

NXP Kinetis Cortex-M4 Lab with ARM
®
 Keil™ MDK toolkit www.keil.com/NXP

1

NXP Kinetis: Twr-K60D100M Cortex™-M4 Lab

ARM® Keil® MDK Toolkit featuring Serial Wire Viewer and ETM Trace

Summer 2016 Version 1.99 by Robert Boys, bob.boys@arm.com

Introduction:

The purpose of this lab is to introduce you to the NXP Cortex
™

-M4 processor by using the ARM Keil MDK toolkit featuring

μVision
®

IDE. We will use the Serial Wire Viewer (SWV) and ETM
™

 trace on the Kinetis processor. For labs and appnotes

for other Tower or Freedom boards see www.keil.com/NXP. MDK includes many example projects.

Keil MDK-Lite
™

 is a free evaluation version that limits code size to 32 Kbytes. The addition of a license number will turn it

into a full commercial version. Contact Keil sales for pricing, options and current special offers. Contact info is on last page.

Linux and Android: For Linux, Android, bare metal (no OS) and other OS support on NXP i.MX and Vybrid series

processors see DS-5
™

 at www.arm.com/ds5/ and www.keil.com/ds-mdk.

Why Use Keil MDK ?

MDK provides these features particularly suited for Kinetis Cortex-M users:

1. µVision IDE with Integrated Debugger, Flash programmer and the

ARM
®
 Compiler toolchain. MDK is turn-key "out-of-the-box".

2. Compiler Safety Certification Kit: www.keil.com/safety/

3. TÜV certified. SIL3 (IEC 61508) and ASILD (ISO 26262).

4. ARM Compiler 5 and 6 (LLVM) included. You can also use GCC.

5. MISRA C/C++ support using PC-Lint. www.gimpel.com

6. Keil RTX is included. This full feature RTOS has a BSD license

and sources are provided. This makes it free. www.keil.com/RTX.

7. MQX: An MQX port for MDK is available including Kernel

Awareness windows. See www.keil.com/NXP.

8. CoreSight™ Serial Wire Viewer and ETM trace capability.

9. Choice of debug adapters: ULINK2™, ULINK-ME™,

ULINKpro™, Segger J-Link and P&E OSJTAG.

10. Kinetis Expert compatible: A MDK 5 project is created that you can load directly into µVision. See kex.nxp.com/.

11. Keil Technical Support is included for one year and is renewable. This helps you get your project completed faster.

12. Affordable perpetual and term licensing. Contact Keil sales for pricing, options and current special offers.

This document details these features and more:

1. Serial Wire Viewer (SWV) data trace including exceptions, display variables and ETM Instruction Trace.

2. Real-time Read and Write to memory locations for Watch, Memory, System Viewer and RTX Tasks windows.

These are non-intrusive to your program. No CPU cycles are stolen. No instrumentation code is needed.

3. Six Hardware Breakpoints (can be set/unset on-the-fly) and one Watchpoint (also called Access Breaks).

4. A DSP example using ARM CMIS-DSP libraries which are included with MDK. All DSP source code is included.

5. Create a µVision project from scratch. Optionally add RTX. An example using Kinetis Expert is also provided.

Serial Wire Viewer (SWV): With a Keil ULINK2, ULINKpro or J-Link (Not with OpenSDA):

Serial Wire Viewer (SWV) displays Exceptions (including interrupts), data reads and writes, ITM (printf), CPU counters,

PC Samples and a timestamp. RTX Event Viewer uses SWV. This information comes from the ARM CoreSight™ debug

module integrated into the Cortex-M4. SWV is output on the 1 bit Serial Wire Output (SWO) or the 4 bit Trace Port.

SWV does not steal any CPU cycles and is completely non-intrusive (except for the ITM Debug printf Viewer).

Embedded Trace Macrocell
™

 (ETM): ETM is available only with a Keil ULINKpro:

ETM records all executed instructions in addition to the features provided by SWV. ETM provides advanced features

including Program Flow instruction debugging in assembly and C, Code Coverage, Performance Analysis and Execution

Profiling. ETM trace requires a ULINKpro to capture and display the ETM trace frames.

The latest version of this document is here: www.keil.com/appnotes/docs/apnt_284.asp

mailto:bob.boys@arm.com
http://www.keil.com/freescale
http://www.arm.com/ds5/
http://www.keil.com/safety/
http://www.gimpel.com/
http://www.keil.com/RTX
http://www.keil.com/NXP
http://kex.nxp.com/
http://www.keil.com/appnotes/docs/apnt_284.asp

 Copyright © 2016 ARM Ltd. ARM Limited or its affiliates. All rights reserved.

NXP Kinetis Cortex-M4 Lab with ARM
®
 Keil™ MDK toolkit www.keil.com/NXP

2

General Information and introduction to MDK:

1. Keil MDK, Download, Install, Licensing, Debug Adapters and Getting Started Guide: 3

2. Software Pack Install Process: 4

3. Install RTX_Blinky_4LEDS and DSP examples: 5

4. A) Software Pack Version Control B) Manage Run-Time Environment C) Update Files: 6

5. CoreSight Definitions: 8

Part A: Connecting and Configuring Debug Adapters to the Kinetis Tower board:

1. P&E OSJTAG Configuration for the NXP Kinetis Tower board: 9

2. Connecting ULINK2, ULINK-ME, ULINKpro or a J-Link to the NXP Tower board: 10

Part B: Example Projects:

1. RTX_Blinky example program using the Kinetis and ULINK2 or ULINKpro: 11

2. Hardware Breakpoints: 11

3. Call Stack + Locals Window: 12

4. Watch and Memory Windows and how to use them: 13

5. System Viewer: Peripheral Views: 14

6. Configuring the Serial Wire Viewer (SWV) Data Trace: 15

a. For ULINK2 or ULINK-ME: 15

b. For ULINKpro: 16

7. Using the Logic Analyzer (LA) with ULINK2, ULINK-ME, ULINKpro or J-Link: 17

8. Watchpoints: Conditional Breakpoints: 18

9. Exceptions and Interrupts tracing using SWV: 19

10. printf using ITM 0 (Instruction Trace Macrocell): 20

11. Trace Configuration Fields and General Trace Information (for reference): 21

Part C: DSP Example Project:

1. DSP Sine Example using ARM CMSIS-DSP Libraries: 22

2. Signal Timings using Logic Analyzer: 23

3. RTX System and Thread Viewer: 23

4. RTX Event Viewer: 24

Part D: ETM Trace with the ULINKpro:

1. Configuring the ULINKpro ETM Trace: 25

2. Blinky Example: ETM Frames starting at RESET and beyond: 27

3. Finding the Trace Frames you are looking for: 28

4. Trace Triggers and how to set them: 29

5. Code Coverage: and how to save Code Coverage: 30

6. Saving Code Coverage: 31

7. Performance Analyzer (PA): 32

8. Execution Profiler: 33

9. In-The-Weeds Example: 34

10. Serial Wire Viewer and ETM Instruction Trace summary: 35

PART E: Creating your own MDK 5 Projects from Scratch:

1. Creating your own MDK 5 Project with no RTOS: 36

2. Adding Keil RTX to your Project: 39

3. Adding a Thread: 40

4. Viewing RTX Timings with Event Viewer: 41

5. Using Kinetis Expert to create a MDK 5 Project with and without Serial Wire Viewer: 42

RESOURCES:

1. Serial Wire Viewer and ETM Instruction Trace Summary: 44

2. Document Resources: 45

3. Keil Products and contact information: 46

 Copyright © 2016 ARM Ltd. ARM Limited or its affiliates. All rights reserved.

NXP Kinetis Cortex-M4 Lab with ARM
®
 Keil™ MDK toolkit www.keil.com/NXP

3

1) General Information and introduction to MDK:

Keil Software: MDK 5 This document used MDK 5.20 and Pack 1.4.0. You can use a later version.

MDK 5 uses Software Packs to distribute processor specific software, examples, documentation and middleware. MDK 5

Core is first installed and you then download the Software Packs you require for your processor(s) from the web. A Pack can

also be imported manually. You no longer need to wait for the next version of MDK or install patches to get the latest files.

Software Packs are an ARM CMSIS standard. See www.keil.com/cmsis and https://github.com/ARM-software/CMSIS_5

Kinetis Expert provides software projects in MDK 5 format consistent with Software Packs.

Summary of the Keil software installation: This is a three step process:

A. Download and install MDK Core. This is done in Step 2 below.

B. Download and install the appropriate Software Pack for the processor you are using. This is done on the next page.

C. In addition, you need to download and install the examples used in this tutorial. See page 5.

Keil MDK Core Software Download and Installation:

1. Download MDK Core from the Keil website. www.keil.com/mdk5/install

2. Install MDK into the default folder. You can install into any folder, but this lab uses the default C:\Keil_v5

3. We recommend you use the default folders for this tutorial. We will use C:\00MDK\ for the examples. The name

Freescale is still used in MDK software but this will be soon changed to NXP.

4. If you install MDK or the examples into different folders, you will have to adjust for the folder location differences.

Licensing:

1. You can use the evaluation version (MDK-Lite) for this lab. No license is needed.

2. You can obtain a one-time free 7 day license in File/License Management. If you are eligible, this button is visible:

3. This gives you access to the Keil Middleware as well as unlimited code size

compilation. Contact Keil Sales to extend this license for evaluation purposes.

Debug Adapters:

1. You do not need any debug adapters: just the TWR board, a USB cable, MDK 5 and a Pack installed on your PC.

2. If you want to use Serial Wire Viewer (recommended) use any Keil ULINK or a Segger J-Link. You will also need

a 10 to 20 pin CoreSight cable to connect to J16 OSJTAG. This cable is normally provided with a ULINK2.

3. For ETM examples, a ULINKpro and a Tower board or one with the 20 pin CoreSight connector is needed.

Keil manufactures several adapters. These are listed below with a brief description.

1. ULINK2 and ULINK-ME: ULINK2 is pictured on page 1. ULINK-ME is offered only as part of certain

evaluation board packages. ULINK2 can be purchased separately. They are electrically the same and both support

Serial Wire Viewer (SWV), run-time memory reads and writes for the Watch, Memory and SVD Peripheral

windows, Watchpoints and hardware breakpoint set/unset on-the-fly.

2. ULINKpro: This is pictured on page 9. ULINKpro supports all SWV features and adds ETM Trace support. ETM

records all executed instructions. ETM provides complete instruction flow debugging, Code Coverage, Execution

Profiling and Performance Analysis features. ULINKpro also provides the fastest Flash programming times.

Keil supports more adapters:

1. OpenSDA: An extra processor on your board becomes a debug adapter compliant to CMSIS-DAP. The NXP

Freedom boards incorporate CMSIS-DAP. µVision communicates via USB to the CMIS-DAP processor which

controls the target processor. This is selected like any adapter in the Target Options menu under the Debug tab.

2. P&E OSJTAG: µVision running on your PC directly connects to the Kinetis Tower board via a USB connection

without any debugging hardware. OSJTAG is good for general debugging but advanced debugging features such as

SWV or ETM are not implemented. These limitations are listed on page 8 along with the configuration instructions.

3. Segger J-Link and J-Trace: J-Link Version 6 (black) or later supports Serial Wire Viewer. J-Trace provides ETM

but has not been tested in this document. Data reads and writes are not currently supported with a J-Link.

Getting Started MDK 5: Obtain this free, useful book here: www.keil.com/gsg/.

http://www.keil.com/cmsis
https://github.com/ARM-software/CMSIS_5
http://www2.keil.com/mdk5/install
http://www.keil.com/gsg/

 Copyright © 2016 ARM Ltd. ARM Limited or its affiliates. All rights reserved.

NXP Kinetis Cortex-M4 Lab with ARM
®
 Keil™ MDK toolkit www.keil.com/NXP

4

2) Software Pack Install Process:

1) Start µVision and open Pack Installer:

When the first MDK install is complete and if you are connected to the Internet, µVision and Software Packs will

automatically start. Otherwise, follow Steps 1 and 2 below. Initially, the Pack master list must be downloaded from the web.

1. Connect your computer to the Internet. This is normally needed to download the Software Packs.

2. Start µVision by clicking on its desktop icon.

3. Open the Pack Installer by clicking on its icon: A Pack Installer Welcome screen will open. Read and close it.

4. The window below opens up: Select the Boards tab. Type twr in the Search box to filter the listings:

TIP: The Devices and Boards tabs are used to filter the items displayed on the right side in the Packs and Examples tabs.

5. Select TWR-K60D100M as shown here: You can also select individual processors under the Devices tab.

6. Note: “ONLINE” is displayed at the bottom right. If “OFFLINE” is displayed, connect to the Internet.

TIP: If there are no entries shown because you were not connected to the Internet when Pack Installer opened, select

Packs/Check for Updates or to refresh once you have connected to the Internet. This is not done automatically.

2) Install the Kinetis K60 Device Family Pack (K60_DFP):

1. Click on the Packs tab. Initially, the Software Pack ARM::CMSIS is installed by default.

2. Select Keil::Kinetis_K60_DFP as shown above and click on Install. The latest Pack will download and install to

C:\Keil_v5\ARM\Pack\Keil\Kinetis_K60_DFP\ by default. This download can take two to four minutes.

3. Its status will then be indicated by the “Up to date” icon:

3) Install The Kinetis K60 Software Development Kit (SDK_DFP):

4. Select Install beside Keil::Kinetis_SDK_DFP to install the NXP SDK Pack.

5. Its status will then be indicated by the “Up to date” icon:

6. Do not close Pack Installer yet as it is needed to download the RTX_Blinky example on the next page.

TIP: You can also install a Pack manually. A Pack has a file extension .pack. It is an ordinary zip file with the extension

changed so it is recognized by µVision. You can download the Pack from the web or transfer the file in any other way.

Double click on this file and it will automatically be installed by µVision.

TIP: You can create your own Pack to distribute a DFP, BSP, SDK or confidential material.

For CMSIS-Pack documentation: www.keil.com/pack/doc/CMSIS/Pack/html/

For complete CMSIS documentation: www.keil.com/CMSIS/

For CMSIS 5 on GitHub: https://github.com/ARM-software/CMSIS_5

http://www.keil.com/pack/doc/CMSIS/Pack/html/
http://www.keil.com/CMSIS/
https://github.com/ARM-software/CMSIS_5

 Copyright © 2016 ARM Ltd. ARM Limited or its affiliates. All rights reserved.

NXP Kinetis Cortex-M4 Lab with ARM
®
 Keil™ MDK toolkit www.keil.com/NXP

5

3) Install RTX_Blinky, RTX_Blinky_4LEDS and DSP Examples:

1) Install RTX_Blinky using Pack Installer Utility:

1. Select the Examples tab:

2. Select CMSIS-RTOS

Blinky as shown here:

3. Select Copy :

4. The Copy Example

window below opens up:

Select Use Pack Folder

Structure: Unselect

Launch µVision:

5. Type in C:\00MDK as

shown below right:

6. Click OK to copy the

example file into C:\00MDK\Boards\Freescale\TWR-K60D100M\. Launch µVision should be unchecked.

7. Pack Installer creates the appropriate subfolders in C:\00MDK\.

8. Close Pack Installer. Open it any time by clicking:

9. If a window opens stating the Software Packs folder has

been modified, select Yes to "Reload Packs ?"

TIP: The default directory for copied examples the first time you

install MDK is C:\Users\<user>\Documents. For simplicity, we will

use the default directory of C:\00MDK\ in this tutorial. You can use

any directory.

2) Install the DSP and 4LEDS Examples from www.keil.com:

1. Obtain the example software zip file from www.keil.com/appnotes/docs/apnt_284.asp.

2. This folder will have been created: C:\00MDK\Boards\Freescale\TWR-K60D100M\

3. Extract the example zip into this folder. These folders will be created in \TWR-K60D100M\:

Super TIP: µVision icon meanings are found here: www.keil.com/support/man/docs/uv4/uv4_ca_filegrp_att.htm

What you have accomplished so far:

1. Keil MDK Core is installed on your computer.

2. The K60 Device Family Pack (DFP) K60 is installed to C:\Keil_v5\ARM\Pack\Keil\Kinetis_K60_DFP.

3. The Kinetis SDK Device Family Pack (DFP) is installed to C:\Keil_v5\ARM\Pack\Keil\Kinetis_SDK_DFP.

4. The Packs example RTX_Blinky is copied to C:\00MDK\Boards\Freescale\TWR-K60D100M.

5. Two extra examples are copied from www.keil.com to C:\00MDK\Boards\Freescale\TWR-K60D100M\.

Next ? We will examine two µVision utilities for managing Software Packs and Pack Version selection.

RTX_Blinky and RTX_Blinky_4LEDS: What is the difference ?

1. The K60D100M Tower board has LED D11 (green) connected to GPIO port PTA10.

2. This is shared with ETM trace Data D0. This results in a conflict between the LED driver and the 4 bit

Trace Port from where ETM data is output from the processor into the ULINKpro.

3. RTX_Blinky does not use D11 and as a result only three LEDs blink. ETM can be used.

4. RTX_Blinky_4LEDS blinks all four LEDs: one for each of four threads. ETM cannot be used. SWV is still

accessible via SWO (UART ULINK2 J-Link) and SWO Manchester with ULINKpro.

http://www.keil.com/
http://www.keil.com/appnotes/docs/apnt_284.asp
http://www.keil.com/support/man/docs/uv4/uv4_ca_filegrp_att.htm
http://www.keil.com/

 Copyright © 2016 ARM Ltd. ARM Limited or its affiliates. All rights reserved.

NXP Kinetis Cortex-M4 Lab with ARM
®
 Keil™ MDK toolkit www.keil.com/NXP

6

4) Software Pack Version Selection and Manage Run-Time Environment:

This section contains three parts on this and the next page:

A) Select Software Pack Version: this section is provided for reference:

This µVision utility provides the ability to choose various Software Pack versions installed in your computer. You can select

the versions you want to use. You must have µVision running and any project open for the following exercises:

1. Select Project/Open Project and navigate to C:\00MDK\Boards\Freescale\TWR-K60D100M\RTX_Blinky.

2. Open Blinky.uvprojx. Blinky will load into µVision.

3. Open Select Software Packs by clicking on its icon:

4. This window opens up. Note Use latest versions … is selected. The latest version of the Pack will be used.

5. Unselect this setting and the window changes as shown similar to the one below right:

6. Expand the header Keil::Kinetis_K60_DFP.

7. You will see only one version – the one you installed. If you had installed

others, you would see them listed like this:

8. Select the fixed pull-down menu and see the three options as shown below:

9. If you wanted to use V 1.3.0, you would select fixed and then select the

check box opposite 1.3.0.

10. Re-select Use latest versions… Do not make any changes.

11. Click OK or Cancel to close this window.

 Copyright © 2016 ARM Ltd. ARM Limited or its affiliates. All rights reserved.

NXP Kinetis Cortex-M4 Lab with ARM
®
 Keil™ MDK toolkit www.keil.com/NXP

7

B) Manage Run-Time Environment: this section is provided for reference:

1. Click on the Manage RTE icon: The next window opens: This includes Keil Middleware, selected open source

software, RTX and CMSIS drivers for various peripherals. Not all Packs offer all options but more are being added.

2. Expand various headers and note the selections you can make. A selection made here will automatically insert the

appropriate source files into your project.

3. Note CMSIS-Core (system.c), Keil RTX and Device::Startup (startup.s) files are selected. You can see these files in

the project window.

4. Do not make any changes.

Click Cancel to close this window.

TIP: Different colors represent messages:

 Green: all required files are located.

 Yellow: some files need to be added. Click the Resolve button to add them automatically or add them manually.

 Red: some required files could not be found. Obtain these files or contact Keil technical support for assistance.

The Validation Output area at the bottom of this window gives some information about needed files and current status.

C) Updating Source Files: this section is provided for reference:

Some of the files provided by a Software pack are stored in your project in ..\RTE

If you update a Software Pack, some of these files might need to be updated from the new Pack. These files will show new

icons as shown below and described here: www.keil.com/support/man/docs/uv4/uv4_ca_updswcmpfiles.htm

Updating Source Files:

1. Right click on a file. A window similar to the one below right opens:

2. Select the appropriate Update selection

3. This procedure is described here: www.keil.com/support/man/docs/uv4/uv4_ca_filegrp_att.htm

http://www.keil.com/support/man/docs/uv4/uv4_ca_updswcmpfiles.htm
http://www.keil.com/support/man/docs/uv4/uv4_ca_filegrp_att.htm

 Copyright © 2016 ARM Ltd. ARM Limited or its affiliates. All rights reserved.

NXP Kinetis Cortex-M4 Lab with ARM
®
 Keil™ MDK toolkit www.keil.com/NXP

8

5) CoreSight Definitions: It is useful to have a basic understanding of these terms:

Cortex-M0 and Cortex-M0+ have only features 2) and 4) plus 11, 12 and 13 implemented. Cortex-M3, Cortex-M4 and

Cortex-M7 can have all features listed implemented. MTB is normally found on Cortex-M0+. It is possible some

processors have all features except ETM Instruction trace and the trace port. Consult your specific datasheet.

1. JTAG: Provides access to the CoreSight debugging module located on the Cortex processor. It uses 4 to 5 pins.

2. SWD: Serial Wire Debug is a two pin alternative to JTAG and has about the same capabilities except Boundary

Scan is not possible. SWD is referenced as SW in the µVision Cortex-M Target Driver Setup. See page 4, 2
nd

picture. The SWJ box must be selected in ULINK2/ME or ULINKpro. Serial Wire Viewer (SWV) must use SWD

because the JTAG signal TDIO shares the same pin as SWO. The SWV data normally comes out the SWO pin.

3. JTAG and SWD are functionally equivalent. The signals and protocols are not directly compatible.

4. DAP: Debug Access Port. This is a component of the ARM CoreSight debugging module that is accessed via the

JTAG or SWD port. One of the features of the DAP are the memory read and write accesses which provide on-the-

fly memory accesses without the need for processor core intervention. µVision uses the DAP to update memory,

watch and RTOS kernel awareness windows in real-time while the processor is running. You can also modify

variable values on the fly. No CPU cycles are used, the program can be running and no code stubs are needed.

You do not need to configure or activate DAP. µVision configures DAP when you select a function that uses it.

Do not confuse this with CMSIS_DAP which is an ARM on-board debug adapter standard.

5. SWV: Serial Wire Viewer: A trace capability providing display of reads, writes, exceptions, PC Samples and printf.

6. SWO: Serial Wire Output: SWV frames usually come out this one pin output. It shares the JTAG signal TDIO.

7. Trace Port: A 4 bit port that ULINKpro uses to collect ETM frames and optionally SWV (rather than SWO pin).

8. ITM: Instrumentation Trace Macrocell: As used by µVision, ITM is thirty-two 32 bit memory addresses (Port 0

through 31) that when written to, will be output on either the SWO or Trace Port. This is useful for printf type

operations. µVision uses Port 0 for printf and Port 31 for the RTOS Event Viewer. The data can be saved to a file.

9. ETM: Embedded Trace Macrocell: Displays all the executed instructions. The ULINKpro provides ETM. ETM

requires a special 20 pin CoreSight connector. ETM also provides Code Coverage and Performance Analysis.

10. ETB: Embedded Trace Buffer: A small amount of internal RAM used as an ETM trace buffer. This trace does not

need a specialized debug adapter such as a ULINKpro. ETB runs as fast as the processor and is especially useful for

very fast Cortex-A processors. Not all processors have ETB. See your specific datasheet.

11. MTB: Micro Trace Buffer. A portion of the device internal RAM is used for an instruction trace buffer. Only on

Cortex-M0+ processors. Cortex-M4 and Cortex-M7 processors provide ETM trace instead.

12. Hardware Breakpoints: The Cortex-M0+ has 2 breakpoints. The Cortex-M3, M4 and M7 usually have 6. These

can be set/unset on-the-fly without stopping the processor. They are no skid: they do not execute the instruction

they are set on when a match occurs. The CPU is halted before the instruction is executed.

13. WatchPoints: Both the Cortex-M0, M0+, Cortex-M3, Cortex-M4 and Cortex-M7 can have 2 Watchpoints. These

are conditional breakpoints. They stop the program when a specified value is read and/or written to a specified

address or variable. There also referred to as Access Breaks in Keil documentation.

Read-Only Source Files:

Some files in the Project window will have a yellow key on them: This means they are read-only. This is to help

unintentional changes to these source files. This can cause difficult to solve problems. Most of these files will not need any

modification.

If you need to modify one, you can use Windows Explorer to modify its permission.

1. In the projects window, double click on the file to open it in the Sources window.

2. Right click on its source tab and select Open Containing folder.

3. Explorer will open with the file selected.

4. Right click on the file and select Properties.

5. Unselect Read-only and click OK. You are now able to change the file in the µVision editor.

6. It is a good idea to make the file read-only when you are finished modifications.

Super TIP: µVision icon meanings are found here: www.keil.com/support/man/docs/uv4/uv4_ca_filegrp_att.htm

http://www.keil.com/support/man/docs/uv4/uv4_ca_filegrp_att.htm

 Copyright © 2016 ARM Ltd. ARM Limited or its affiliates. All rights reserved.

NXP Kinetis Cortex-M4 Lab with ARM
®
 Keil™ MDK toolkit www.keil.com/NXP

9

Part A: Connecting and Configuring Debug Adapters to the Kinetis Tower board:

1) P&E OSJTAG configuration for the NXP Tower board:

If you are using any Keil ULINK or J-Link as your debug adapter: you can skip this page:
µVision supports OSJTAG. This allows debugging the Kinetis Tower with a USB cable. No external adapter is required.

MDK contains the P&E drivers located in C:\Keil_v5\ARM\PEMicro. You usually need to install them initially. See Step 4.

If you decide to use a ULINK2 or ULINK-ME, you will get Serial Wire Viewer (SWV). With a ULINKpro, ETM Trace is

added which records all executed instructions and provides Code Coverage, Execution Profiling and Performance Analysis.

Start µVision, select the RTX_Blinky Project and install the P&E drivers:

1. Start µVision by clicking on its desktop icon.

2. Select Project/Open Project.

3. Select the Blinky.uvprojx project in C:\00MDK\Boards\Freescale\TWR-K60D100M\RTX_Blinky.

4. Using Microsoft Explorer, navigate to C:\Keil_v5\ARM\PEMicro\Drivers and execute PEDrivers_install.exe.

5. Plug the K60 board to your PC with a USB cable to J17 USB.

Create a new Target Selection:

1. Select Project/Manage/Project Items…

2. In the Project Targets area, select NEW or press your keyboard INSERT key.

3. Enter PE Flash and press Enter. Click OK to close this window.

4. In the Target Selector menu, select the PE Flash selection you just made:

5. Select Options for Target or ALT-F7. Click on the Debug tab to select a debug adapter.

6. Select PEMicro Debugger… as shown here:

Configure the P&E Connection Manager:

1. Click on Settings: and the P&E Connection Manager window opens.

2. Click the Select New Device box, and select your exact processor. In this

case it is K60DN512M10 as shown below: This step is very important.

3. Select Use SWD reduced pin protocol for communications… (optional)

4. Click on the Refresh List and you will get

a valid Port box as shown here:

5. This means µVision is connected to the

target K60 using P&E OSJTAG.

6. Click on OK to close this window.

7. If you see Undetected in Port:, this means

µVision is not connected to the target.

Problems can be the K60 board is not

connected with USB, or wrong or no or

the wrong device is selected. Fix the problem and click Refresh List to try again.

8. Click the Utilities tab. The next step prevents the Flash being programmed twice when entering Debug mode.

9. Unselect Update target before Debugging in the Utility tab. Click OK to return to the main µVision menu.

10. Select File/Save All or click . P&E OSJTAG is now completely configured including Flash programming.

TIP: If you are notified that the K60 P&E firmware needs to be updated, allow this. You are given instructions.

OSJTAG Limitations: (Any Keil ULINK provides these options. A J-Link provides most of them.)

1. Hardware Breakpoints can’t be set on-the-fly while the program is running. You must stop the program.

2. No Watchpoints. No Serial Wire Viewer or ETM Trace support.

3. No on-the-fly memory read or write updates to the Watch and Memory windows while the program is running.

4. RTX Kernel Awareness window do not update while the program is running. Event Viewer is not available.

 Copyright © 2016 ARM Ltd. ARM Limited or its affiliates. All rights reserved.

NXP Kinetis Cortex-M4 Lab with ARM
®
 Keil™ MDK toolkit www.keil.com/NXP

10

ULINKpro connected to a K60 Tower

2) Connecting a ULINK2/ME, ULINKpro or J-Link to the NXP Tower board:

NXP provides the ARM standard 20 pin Cortex Debug connector for JTAG/SWD and ETM connection as shown here:

Pins 1 through 10 provide JTAG, SWD and SWO signals. Pins 11 through 20 provide the ETM instruction trace signals.

ARM also provides a 10 pin standard connector that provides the first 10 pins of the 20 pin but this is not installed on the

Kinetis board. ARM recommends that both the 10 and 20 pin connectors be placed on target boards.

Pin 7 on both the 10 and 20 pin is a key. On the male connector, pin 7 is

supposed to be absent. This is not the case on the Kinetis board.

Keil cables might have pin 7 filled with a plastic plug and if so this will

need to be removed before connecting to the Kinetis target. This is

easily done with a sharp needle. Merely pry the plastic pin out.

Alternatively, you can cut pin 7 off the target connector. This is more

difficult to do. Cable orientation is provided by the socket itself and

there is no chance for reverse orientation.

It is impossible to plug a 10 pin plug into the 20 pin socket without

bending two pins on the socket. Please use the correct cables.

Connecting ULINK2 or ULINK-ME:

Pictured is the 10 pin to 20 pin Keil connector. The arrows point to pin 1.

This cable is supplied with the ULINK2 and ULINK-ME. This

cable can also be ordered by contacting Keil sales or tech

support. The part number is ULC-2010A or B.

You will need to take the case off the ULINK2 and install the

special cable. The ULINK-ME does not have a case and the

cable can be directly installed on the 10 pin connector. The

ULINK-ME is pictured bottom right and the arrow points the

10 pin connector.

Connecting a ULINKpro:

The ULINKpro connects directly to the Kinetis board with its

standard 20 pin connector. You might need to remove the key pin to connect to the

Kinetis target as described above.

Power: Power the board with a USB cable as shown below (J17) or the method

specified for your board.

J-Link: Segger provides an adapter to go from the large 20 pin

connector to the 10 and 20 pin Cortex connectors as shown above.

Contact Segger to purchase this adapter: www.segger.com.

Connector Part Numbers: The 10 pin male connector as shown on

the ULINK-ME is Samtec part number FTSH-105-01. The 20 pin

ETM connector as used on the Kinetis boards is: FTSH-110-01.

You may want to add appropriate suffixes for guide options.

TIP: Want to purchase some of the connectors used on the Tower

system ? They are actually standard 32 bit PCI sockets as used on

personal desktop computers. These connectors are easy to find.

Segger CortexM Connector Adapter

Keil ULINK-ME

20 Pin Cortex Debug Connector

10 to 20 Pin Cable, Pin 1 indicated

 Copyright © 2016 ARM Ltd. ARM Limited or its affiliates. All rights reserved.

NXP Kinetis Cortex-M4 Lab with ARM
®
 Keil™ MDK toolkit www.keil.com/NXP

11

Part B: Keil Example Projects

1) RTX_Blinky example program:

We will run the example program RTX_Blinky on K60D100M Tower board using a ULINK2, ULINKpro or a J-Link.

It is possible to use the P&E OSJTAG with this example. You must configure this as described on page 8. No hardware

debug adapter is needed in this case. If you want to use a Segger J-Link, configure it similar to the P&E example.

Connect the Debug Adapter:

1. Connect your debug adapter as described on the previous page. Use the special 10 to 20 pin cable for the ULINK2.

2. Power your TWR board with a USB cable connected to J17 USB and to your PC.

Open and compile the Blinky Program:

1. Start µVision by clicking on its desktop icon.

2. Select Project/Open Project.

3. Open the file C:\00MDK\Boards\Freescale\TWR-K60D100M\RTX_Blinky\Blinky.uvprojx.

4. Select your debug adapter in the Target Options pull down menu box as shown here:

ULINK-Flash is for a ULINK2 or a ULINK-ME. ULINKpro-Flash is for a ULINKpro.

TIP: If you are using the P&E onboard debug adapter, configure it as shown on page 8. If you

are using a J-Link, configure it similarly. In each case, a suitable entry will be created in this menu box you can then select.

5. Compile the source files by clicking on the Rebuild icon. . You can also use the Build icon beside it.

TIP: Select Options for Target and select the Target tab: select MicroLIB to make your compilation smaller.

6. Enter Debug mode by clicking on the Debug icon. Select OK if the Evaluation Mode box appears.

The Kinetis FLASH memory will be programmed. Progress will be indicated in the Output Window.

7. Click on the RUN icon. Note: you stop the program with the STOP icon.

TIP: The board will start Blinky stand-alone. Blinky is now permanently programmed in the Flash until reprogrammed.

2) Hardware Breakpoints:

1. With Blinky running, click once in the margin in the source file Blinky.c on a darker gray block in the LED_On

function near line 52 as shown here:

2. A red circle is created and soon the program will stop here:

TIP: If you are using P&E, you must stop the program to set the

breakpoint. All other debuggers can set/unset breakpoints on-the-fly.

3. The yellow arrow is where the program counter is pointing to

in both the Disassembly and appropriate source window.

4. The Kinetis has 6 hardware breakpoints. A breakpoint does

not execute the instruction it is set on. This is a very

important feature.

5. If you set too may breakpoints, µVision will warn you.

6. Remove any breakpoints by clicking again on the red circle.

TIP: You can view the Breakpoint list by selecting

Debug/Breakpoints or Ctrl-B. Watchpoints are also displayed here.

The three LEDs, D7 through D9 on the Kinetis board, will now blink in sequence.

Now you know how to compile a program, load it into the Kinetis processor Flash, run it and stop it.

 Copyright © 2016 ARM Ltd. ARM Limited or its affiliates. All rights reserved.

NXP Kinetis Cortex-M4 Lab with ARM
®
 Keil™ MDK toolkit www.keil.com/NXP

12

3) Call Stack + Locals Window: (This page works with all debug adapters including P&E)

Local Variables:

The Call Stack and Local windows are incorporated into one integrated window. Whenever the program is stopped, the Call

Stack + Locals window will display stack contents as well as any local variables belonging to the active function.

If possible, the values of the local variables will be displayed and if not the message <not in scope> will be displayed. The

Call + Stack window presence or visibility can be toggled by selecting View/Call Stack window.

1. Run and Stop Blinky. Click on the Call Stack + Locals tab.

2. Shown is the Call Stack + Locals window.

3. Note os_idle_demon is highlighted with a cyan block. This

example uses RTX as its RTOS. The CPU spends most of

its time in the idle demon. This can be adjusted.

 The contents of local variables are displayed as well as

names of active functions. Each function name will be

displayed as it is called by another function or interrupt.

 When a function exits, it is removed from the list. When

using RTX, all threads are always displayed.

 The first called functions are at the bottom of this table.

 This table is active only when the program is stopped.

4. In Blinky.c, there is the function Switch_On near line 68.

5. Set a breakpoint in this function.

6. Click on RUN The program will stop at this point.

7. The Call Stack window will display the function calling Switch_On. It will be highlighted in cyan as shown below:

In this example, you can see phaseA called Switch_On with the parameter led = 0x01.

TIP: They are not, but for now, treat RTX threads or tasks as functions. RTX refers to threads as such and not as tasks.

8. Click on RUN again. A different function (a thread in this case) will be designated with the cyan block.

9. Move the breakpoint to the function LED_On near line 50. Click on RUN again.

10. Now you can see that a function called Switch_On which in turn called LED_On. See the picture below:

TIP: You can modify a variable value in the Call Stack &

Locals window when the program is stopped.

Callee and Caller Code:

1. Right click on a function (I used LED_On) and select either Show Caller

Code or Caller code as shown here:

2. The source window and dissambly windows will display the proper code.

3. Remove all breakpoints before continuing. Click on them or enter

Ctrl_B in your keyboard and select Kill All in the Breakpoints window

that opens. You can also temporarily deselect them.

 Copyright © 2016 ARM Ltd. ARM Limited or its affiliates. All rights reserved.

NXP Kinetis Cortex-M4 Lab with ARM
®
 Keil™ MDK toolkit www.keil.com/NXP

13

4) Watch and Memory Windows and how to use them: (P&E updates at program halt)

The Watch and Memory windows will display updated variables (not local or automatic variables) in real-time. It does this

using ARM CoreSight debugging technology that is part of Cortex-M processors. It is also possible to “put” or insert values

into memory locations using the Memory window in real-time.

a) Create a Global Variable counter and increment it:

1. Stop the program and exit Debug mode.

2. In Blinky.c near line 12, create this global variable: unsigned int counter = 0;

3. In the thread Thread 5 'clock': which is located near line 145, add this code at the end of this thread near line 151:

counter++;

if (counter > 0x0F) counter = 0;

4. Compile the source files by clicking on the Rebuild icon. . Enter Debug mode Click RUN

b) Enter counter in a Watch window:

1. In Blinky.c, right click on any instance of counter and select Add counter to … and select Watch 1.

TIP: You can add a variable to a Watch or Memory window while the program runs only with any Keil ULINK or a J-Link.

2. This action will open the Watch window if it is not already open. counter is displayed incrementing as shown here:

TIP: You can also block counter, click and hold and drag it into Watch 1.

You can also enter a variable manually by double-clicking or pressing F2 and

using copy and paste or typing the variable name in.

These three methods of entering variables also work with the Memory and Logic

Analyzer windows. Variables can also be selected from the Symbol table. This

also has the benefit of fully qualifying them (specifying where they are located).

TIP: To Drag ‘n Drop into a tab that is not active, pick up the variable and hold it over the tab you want to open; when it

opens, move your mouse into the window and release the variable.

c) Enter counter in a Memory window:

1. In Blinky.c, right click on counter and this time select Add counter to … and select Memory 1.

2. Note the value of counter is displaying its address in Memory 1 as if it is a pointer. This is useful to see what

address a pointer is pointing to, but this is not what we want to see at this time.

3. Add an ampersand “&” in front of the variable name. Now the physical address is shown (0x2000 0000). Note: the

address where counter is located might be slightly different in your program but it will be displayed the same way.

4. Right click in the Memory window and select Unsigned/Int.

5. The data contents of counter is displayed as shown here:

6. Both the Watch and Memory windows are updated in real-time.

7. Right-click on a memory location and select Modify Memory. You can

change the value of this location while the program is running. The

Watch window can be modified when stopped or data not changing fast.

TIP: You are able to configure the Watch and Memory windows while the program is still running in real-time without

stealing any CPU cycles. You are able to modify memory location contents in a Memory window in real-time.

TIP: You are not able to view local variables while the program is running. Convert them to static or global variables.

How It Works:

µVision uses ARM CoreSight technology to read or write memory locations without stealing any CPU cycles. This is

nearly always non-intrusive and does not impact the program execution timings. Remember the Cortex-M4 is a Harvard

architecture. This means it has separate instruction and data buses. While the CPU is fetching instructions at full speed,

there is plenty of time for the CoreSight debug module to read or write values without stealing any CPU cycles.

This can be slightly intrusive in the unlikely event the CPU and µVision reads or writes to the same memory location at

exactly the same time. Then the CPU will be stalled for one clock cycle. In practice, this cycle stealing rarely happens.

 Copyright © 2016 ARM Ltd. ARM Limited or its affiliates. All rights reserved.

NXP Kinetis Cortex-M4 Lab with ARM
®
 Keil™ MDK toolkit www.keil.com/NXP

14

5) System Viewer (SV): (any ULINK or a J-Link update in real time. P&E updates at program halt)

The System Viewer provides the ability to view certain registers in the CPU core and in peripherals. In most cases, these

Views are updated in real-time while your program is running. These Views are available only while in Debug mode. There

are two ways to access these Views: a) View/System Viewer and b) Peripherals/System Viewer. In the Peripheral/Viewer

menu, the Core Peripherals are also available:

In our Blinky example, the three LEDs blinking are connected to GPIO Port PTA.

1. Click on RUN . You can open SV windows when your program is running.

GPIO Port A:

2. Select Peripherals/System Viewer, GPIO and then PTA as shown here:

3. The PTA window opens up:

4. You can now see PDOR update as the LEDs blink

in succession:

5. You can change the values in the System Viewer

while the program is running or stopped. It will be

difficult to see this as these values are updated so

often that your changes will be overwritten.

6. This window is updated using the same CoreSight

technology as the Watch and Memory windows.

7. Look at other Peripherals contained in other System

Viewer windows to see what else is available.

TIP: If you click on a register in the properties column, a description about this register will appear at the bottom of the

window as shown above for register PSOR.

SysTick Timer: This program uses the Cortex SysTick timer as the tick timer for RTX RTOS.

1. Select Peripherals/Core Peripherals and then select SysTick Timer. Run the program.

2. The SysTick window shown below opens:

3. Note it also updates in real-time while your program runs using CoreSight DAP technology.

4. Note the ST_RELOAD and RELOAD register contents. This is the reload register value. This is set during the

SysTick configuration by RTX using values set in RTX_Conf_CM.c.

5. Note that it is set to 0xA3D3 = 41,939. This is created by 41.94 MHz/1000-1 = 41,939. 1,000 is specified as the

timer tick value in RTX_Conf_CM.c . Changing the reload

value changes how often the SysTick interrupt 15 occurs.

6. In the RELOAD register in the SysTick window, while the

program is running, type in 0x2000 and click inside

ST_RELOAD ! (or the other way around)

7. The blinking LEDs will speed up. This will convince you of

the power of ARM CoreSight debugging.

8. Replace RELOAD with 0xA3D3. A CPU RESET will

also accomplish this.

9. When you are done, stop the program and close all the

System Viewer windows that are open.

TIP: You can also do this exercise with the SysTick window in the System Viewer.

TIP: It is true: you can modify values in the SV while the program is running. This is very useful for making slight timing

value changes instead of the usual modify, compile, program, run cycle.

You must make sure a given peripheral register allows for and will properly react to such a change. Changing such values

indiscriminately is a good way to cause serious and difficult to find problems.

 Copyright © 2016 ARM Ltd. ARM Limited or its affiliates. All rights reserved.

NXP Kinetis Cortex-M4 Lab with ARM
®
 Keil™ MDK toolkit www.keil.com/NXP

15

6a) Configuring Serial Wire Viewer (SWV) only with ULINK2, ULINK-ME or J-Link:

Serial Wire Viewer provides data trace information including interrupts in real-time without any code stubs in your sources.

These instructions are for a ULINK2, ULINK-ME or a J-Link. They are not for ULINKpro: those are on the next page.

Configure SWV:

1. µVision must be stopped and in Edit mode (not Debug mode). RTX_Blinky must be loaded.

2. For ULINK2/ME: select ULINK-Flash: For J-Link, configure a new Options for Target.

3. Select Options for Target or ALT-F7 and select the Debug tab. Your debugger must be displayed beside Use:.

4. Select Settings: on the right side of this window.

5. Confirm Port: is set to SW and SWJ box is enabled for SWD operation. SWV will not work with JTAG.

6. Click on the Trace tab. The window below is displayed.

7. In Core Clock: enter 41.94 MHz. Select Trace Enable. This value must be set correctly to your CPU speed.

8. Click on OK twice to return to the main µVision menu. SWV is now configured and ready to use.

Display Trace Records:

1. Select File/Save All or click .

2. Rebuild the source files.

3. Enter Debug mode.

4. Click on the RUN icon. .

5. Open Trace Records window by clicking

on the small arrow beside the Trace icon

and select Records:

6. The Trace Records

window will open:

7. Double-click inside Trace Records to

clear any spurious first frames.

8. Exception 15 is the SYSTICK timer. It is

a timer provided for RTOS use.

9. All frames have a timestamp displayed.

10. Exception Return means all exceptions

have returned. This can be used to detect

Cortex exception tail-chaining.

11. Right click in Trace Records and unselect

Exceptions. Now, only ITM frames are

displayed.

12. Note the "X" in the Dly column. This is

the result of SWV overload.

13. Select the Trace Exception tab or select it

in Step 4 above. Click in the Count

column heading to display SysTick.

14. Unselect EXTRC:

15. Double click inside the Trace Records

window and the "x" in DLY column will go away. Exception frames are no longer being captured and the bus load

is less on the single bit SWO pin. There are probably no overload indicators (x) now.

16. If SVCalls were not incrementing in the Trace Exceptions window: Select Debug/Debug Settings to open Trace

Confg window. Select Trace tab. Unselect ITM Port 31. Select EXCTRC. Click OK twice. Click RUN after

Notification box. SVCall will now update correctly. The ITM 31 frames were causing the SvCall to not increment.

 Copyright © 2016 ARM Ltd. ARM Limited or its affiliates. All rights reserved.

NXP Kinetis Cortex-M4 Lab with ARM
®
 Keil™ MDK toolkit www.keil.com/NXP

16

6b) Using Serial Wire Viewer (SWV) with ULINKpro: (using the 4 bit Trace Port)

1) Configure SWV: (You can also use the SWO port with the ULINKpro. See the first and very last TIP: below.)

1. µVision must be stopped and in Edit mode (not Debug mode). RTX_Blinky must be loaded.

2. Connect a ULINKpro to the J16 OSJTAG connector and to your PC USB Port.

3. Select ULINKpro: The ULINKpro settings are preconfigured with this Target Option.

4. Select Options for Target or ALT-F7 and select the Debug tab.

5. Confirm TracePort.ini is entered in the Initialization File box:

This configures certain GPIO ports for ETM trace port operation when Debug mode is entered.

6. Select Settings: on the right side of this window.

7. Click on the Trace tab. The window below is displayed. Confirm these settings are correct.

8. Core Clock: 41.94 MHz. ULINKpro uses this only

to calculate timings displayed in various windows.

9. Select the Trace Enable box.

10. Unselect ETM Trace Enable (will look at this later).

11. In Trace Port, select Sync Trace Port with 4-bit Data.

12. Select EXTRC to display exceptions and interrupts.

13. Click on OK twice to return to the main µVision

menu. SWV is now configured and ready to use.

14. In this configuration, SWV data will be output on the

4 bit Trace Port rather than the 1 bit SWO pin.

TIP: If Serial Wire Output Manchester is chosen in Trace Port: box, SWV data is sent out the one bit SWO pin.

2) Display the Trace Data window:

1. Select File/Save All or click . Click on the Rebuild icon to build the source files. .

2. Enter Debug mode. Click on the RUN icon. .

3. Open Trace Data window by clicking on the small arrow beside the Trace icon:

4. The Trace Data window shown below will open.

5. STOP the program to display the Exceptions as shown below:

6. In the Search box, enter svcall and press Enter. These exceptions will be highlighted.

7. In the Display: box, select ITM Stimulus. Now the ITM Port 31 frames are displayed.

TIPS:

1. The Trace Data window is different than the

Trace Records window provided with ULINK2.

2. Clear the Trace Data window by clicking

3. The contents of the Trace Data window can be

saved to a file.

4. ULINKpro does not update the Trace Data

window while the program is running.

5. The Trace Exceptions window updates in real-

time. Select the Trace Exceptions window to

see the SysTick and SVCall updated while

running Blinky. Double click in the Count column heading to bring SysTick and SVCall to the top.

6. The Trace Port outputs SWV data faster than the 1 bit SWO with UART (ULINK2) or Manchester with ULINKpro.

The 1 bit SWO port can still be useful for very high CPU speeds that ETM is unable to handle. (> 100MHz)

 Copyright © 2016 ARM Ltd. ARM Limited or its affiliates. All rights reserved.

NXP Kinetis Cortex-M4 Lab with ARM
®
 Keil™ MDK toolkit www.keil.com/NXP

17

7) Using the Logic Analyzer (LA) with ULINK2, ULINK-ME, ULINKpro or J-Link:

This example will use the ULINK2, ULINKpro or a J-Link with the Blinky example. Please connect a your debug adapter

to your Kinetis board and configure it for Serial Wire Viewer (SWV) trace as described on the previous pages.

µVision has a graphical Logic Analyzer (LA) window. Up to four variables can be displayed in real-time using the Serial

Wire Viewer as implemented in the Kinetis. This is shared with the Watchpoints.

1. SWV must be configured as found on the two previous pages for the debug adapter you are using.

2. Run the program. . TIP: Recall you can configure the LA while the program is running or stopped.

3. Open View/Analysis Windows and select Logic Analyzer or select the LA window on the toolbar.

4. Locate the global variable counter in Blinky.c. It is declared near line 12.

5. Right click on counter and select Add counter to… and select Logic Analyzer.

TIP: If an error results when adding counter to the LA, the most probable cause is SWV is not configured correctly.

6. In the LA, click on Setup and set Max: in Display Range to 0x0F. Click on Close.

7. The LA is now configured to display counter in a graphical format.

8. counter should still be in the Watch and Memory windows. It will be incrementing if the program is running.

9. Adjust the Zoom OUT icon in the LA window to about 1 sec or so to get a nice ramp as shown below.

10. In the Memory 1 window, right click on the counter data field.

11. In Modify Memory at 0x2000 0000, at an interesting counter value, enter 0 and press Enter.

12. This modified value will be displayed in the LA window as shown below inside the blue circle:

TIP: The Logic Analyzer can display static and global variables, structures and arrays. It can’t see locals: just make them

static or global. To see peripheral registers, enter them into

the Logic Analyzer and write data to them.

1. Select Debug/Debug Settings. Select the Trace tab.

2. Select On Data R/W Sample. Click OK twice. This

adds addresses to the Src Code/Trigger Addr column.

3. Clear the Trace Data or Trace Records window.

Double click for ULINK2 or for ULINKpro:

4. RUN the program. . STOP the program.

5. Open the Trace Data or Records window.

6. The window similar to here opens up:

7. In the Display box, select ITM Data Write:

8. The first line in this Trace Data window means:

The instruction at 0x0000 0784 caused a write

of data 0x03 to address 0x2000 0000 at the

listed time in seconds.

9. If using a ULINKpro, in the Trace Data

window, double click on a data write frame and

the instruction causing this write will be highlighted in the Disassembly and the appropriate source windows.

TIP: The Src Code/Trigger Addr column is activated when you selected On Data R/W Sample in Step 2. You can leave this

unselected to save bandwidth on the SWO pin if you are not interested in it. With a ULINK2, this column is called PC.

TIP: The ULINK2 gives a different Trace window. It is the same Trace Records as shown elsewhere in this document.

TIP: Raw addresses can also be entered into the Logic Analyzer. An example is: *((unsigned long *)0x20000000)

 Copyright © 2016 ARM Ltd. ARM Limited or its affiliates. All rights reserved.

NXP Kinetis Cortex-M4 Lab with ARM
®
 Keil™ MDK toolkit www.keil.com/NXP

18

8) Watchpoints: Conditional Breakpoints: Only with a ULINK2, ULINK-ME, ULINKpro or J-Link.

Kinetis Cortex-M4 processors have one Watchpoint. Watchpoints can be thought of as conditional breakpoints. The Logic

Analyzer uses the same CoreSight components as Watchpoints in its operations. A Watchpoint requires two of the four

comparators. Keil documentation often refers to Watchpoints as Access Breaks.

µVision warns you if you attempt to set more than one Watchpoint. SWV or ETM do not need to be configured and any

ULINK or J-Link can be used for Watchpoints. P&E OSJTAG does not support Watchpoints.

1. Use the Blinky example from the previous page. You can set a Watchpoint while the program is running.

2. While in Debug mode, click on Debug and select Breakpoints or press Ctrl-B.

3. The SWV Trace does not need to be configured for Watchpoints. However, we will use it in this exercise.

4. In the Expression box enter: counter == 0x8. Select both the Read and Write Access for convenience.

5. Click on Define and it will be accepted as shown here:

6. If the program is running and when counter = 0x8, the

program will stop as the Watchpoint is immediately

set.

7. Click on Close.

8. With ULINK2, double-click in the Trace Records

window to clear it or with ULINKpro click to

clear Trace Data for convenience.

9. Set counter in the Watch 1 or Memory 1 window to 1.

This is to allow the program to run for a bit.

10. Click on RUN.

11. When counter equals 0x8, the program will stop. This

is how a Watchpoint works.

12. You will see counter had incremented in the Logic Analyzer as well as in the Watch window.

13. Note the four data writes in the Trace Records window shown below. The last one is when counter = 0x08. The

data writes to counter are shown plus the address the data written to and the PC of the write instruction. This is

with a ULINK2 or ULINK-ME. The ULINKpro will display a different window and the program must be stopped

to display it. This is also true for the J-Link.

TIP: Data writes are displayed in the SWV Trace window only when a variable is displayed in the Logic Analyzer.

14. The only type of expressions you can currently enter is the equal compare (= =) and address only compare.

15. To repeat this exercise, select RUN twice to get counter past 8.

16. When finished, open the Breakpoints window and either use Kill All to delete the Watchpoint or deselect it by

unchecking it. Having undeleted Watchpoints activate unexpectedly can be rather confusing while debugging.

17. Leave Debug mode for the next exercise.

TIP: To edit a Watchpoint, double-click on it in the Breakpoints window and its information will be dropped down into the

configuration area. Unselect the Watchpoint Current Breakpoints window. Modify the Watchpoint. Click on Define to

create another Watchpoint. You probably should delete the old one by highlighting it and click Kill Selected.

J-Link does not currently display Data reads or writes in its trace window and the LA does not display with Watchpoints.

P&E OSJTAG does not currently support Watchpoints.

 Copyright © 2016 ARM Ltd. ARM Limited or its affiliates. All rights reserved.

NXP Kinetis Cortex-M4 Lab with ARM
®
 Keil™ MDK toolkit www.keil.com/NXP

19

9) Exceptions and Interrupts using SWV: Only with ULINK2, ULINKpro or J-Link. Not P&E.

The Kinetis family using the Cortex-M4 processor has many useful interrupts and SWV makes it easy to determine when and

how often they are being activated. Interrupts are a subset of Exceptions. This page assumes you are using a ULINK2.

Exceptions are enabled in SWV by EXCTRC in the Trace Config or Trace Exception windows:

1. Click Options for Target: If using a ULINKpro, you can skip steps 2 through 4.

2. Select the Debug tab and then click the Settings box. Select the Trace tab.

3. Unselect ITM 31 to lessen the output on the SWO pin to lessen trace data overflows:

This turns the Event Viewer off. None of its data is output on the SWO pin.

4. Click on OK twice to return to the main µVision menu.

5. Open the Trace Records window.

6. If you are using a ULINKpro or J-Link, this name is Trace Data.

7. Double click in the Trace Records window to clear it or use with ULINKpro.

8. Click RUN to start the program.

9. You will see a window similar to the one here with Exceptions frames displayed:

TIP: With a ULINKpro or a J-Link, stop the program to

see these exceptions. They are displayed differently.

What Is Happening ?

1. You can see SysTick Exception 15 occurrences with timestamps.

2. Entry: When the exception enters.

3. Exit: When the exception exits or returns.

4. Return: When all the exceptions have returned. This is useful to detect tail-chaining.

TIP: Num is the exception number: RESET is 1. External interrupts (ExtIRQ), which are normally attached to peripherals,

start at Num 16. For example, Num 41 is also known as 41-16 = External IRQ 25. Num 16 = 16 – 16 = ExtIRQ 0.

2. Right click in the Trace Records window and unselect Exceptions. Now the data writes from the LA are displayed.

TIP: The SWO pin is one pin on the Cortex-M4 family processors that all SWV information is fed out. There are limitations

on how much information we can feed out this one pin. ULINKpro has the option of sending this data out the 4 bit Trace

Port with much greater throughput tan the SWO pin. ULINKpro handles SWV data faster than a ULINK2 or J-Link.

Trace Exceptions window:

1. Select the Trace Exceptions tab and the window below opens:

2. Click in the Count column heading to bring exceptions that have occurred to the top. Exceptions 15 and 11 will be

displayed and are updated in real time without intrusions to your program using SWV.

3. Note the number of times these have happened. This is useful information in case interrupts come too fast or slow.

4. Scroll down in this window and note the other exceptions are listed by name.

5. You can clear this trace window

by clicking on the clear icon.

6. All this information is displayed

in real-time and without

stealing CPU cycles !

ULINKpro: The Trace Exceptions update while the program runs. Stop the program to update the Trace Data window.

If you are using a ULINKpro and RTX, you can view interrupts with processing times in the Event Viewer.

P&E does not support anything on this page. J-Link supports everything except Data read and writes.

 Copyright © 2016 ARM Ltd. ARM Limited or its affiliates. All rights reserved.

NXP Kinetis Cortex-M4 Lab with ARM
®
 Keil™ MDK toolkit www.keil.com/NXP

20

10) printf using ITM 0 (Instrumentation Trace Macrocell) SWV is required:

Recall that we showed how you can display information about the RTOS in real-time using the RTX Viewer. This is done

through ITM Stimulus Port 31. ITM Port 0 is available for a printf type of instrumentation that requires minimal user code.

After the write to the ITM port, zero CPU cycles are required to get the data out of the processor and into µVision for display

in the Debug (printf) Viewer window. It is possible to send ITM data to a file: www.keil.com/appnotes/docs/apnt_240.asp.

1. Stop the program and exit Debug mode .

Add STDOUT File (retarget_io.c):

2. Open the Manage Run-Time Environment window (MRTE) .

3. Expand Compiler and I/O as shown here:

4. Select STDOUT and ITM. This adds the file retarget_io.c to the project.

5. Ensure all blocks are green and click OK to close the MRTE.

Add printf and #include <stdio.h> to Blinky.c:

1. In Blinky.c near line 13, add this line: #include <stdio.h>

2. Inside the function Switch_On found near line 68, add this line: printf("LED %d On\n", led);

3. Inside the function Switch_Off found near line 77, add this line: printf("LED %d Off\n", led);

Enable Microlib and Configure Serial Wire Viewer:

1. Select Options for Target or ALT-F7. Select the Target tab.

2. Select Use MicroLIB. If you don't want to use MicroLIB add 200 bytes to the Heap in startup_MK60D10.s.

3. Select the Debug tab. Select Settings and then the Trace tab.

4. Unselect On Data R/W Sample and ITM Port 31. (this is to help not overload the SWO pin so this step is optional)

5. Select ITM Port 0. ITM Stimulus Port “0” enables the Debug (prinftf) Viewer. All ports 1 through 30 are unused.

6. Click OK twice to return to the main µVision menu.

Increasing RTX stack size:

When a printf statement is added to a thread, you must increase the RTX stack size as follows:

1. Select the RTX_Conf_CM.C tab. Click on the Configuration Wizard tab at the bottom of this window.

2. Set the Default and Main stack size to 400 bytes as shown here:

3. In general, if you experience trouble with RTX operation, try

increasing the number of threads and size of the RTX stack. This

stack is not the same as the CPU system stack as referenced by the

Stack Pointer but is still in RAM.

Compile and Run the Project:

7. Select File/Save All or click .

8. Rebuild the source files and enter Debug mode .

9. Click on View/Serial Windows and select Debug (printf) Viewer and click on RUN.

10. In the Debug (printf) Viewer you will see the printf statements appear.

11. Right click on the Debug window and select Mixed Hex ASCII mode. Note other settings.

Obtaining a character typed into the Debug printf Viewer window from your keyboard:

It is possible for your program to input characters from a keyboard with the function ITM_ReceiveChar in core.CM4.h.

This is documented here: www.keil.com/pack/doc/CMSIS/Core/html/group___i_t_m___debug__gr.html.

A working example can be found in the File System Demo in Keil Middleware. Download this using the Pack Installer.

TIP: ITM_SendChar is a useful function you can use to send characters out ITM. It is found in core.CM4.h.

TIP: It is important to select as few options in the Trace configuration as possible to avoid overloading the SWO pin. Enable

only those SWV features that you need. If you need high performance SWV, a ULINKpro using 4 bit Trace Port is fastest.

http://www.keil.com/appnotes/docs/apnt_240.asp
https://www.keil.com/pack/doc/CMSIS/Core/html/group___i_t_m___debug__gr.html

 Copyright © 2016 ARM Ltd. ARM Limited or its affiliates. All rights reserved.

NXP Kinetis Cortex-M4 Lab with ARM
®
 Keil™ MDK toolkit www.keil.com/NXP

21

11) Trace Configuration Fields and General Trace Information:

For ULINK2 see www.keil.com/support/man/docs/ulink2/ulink2_ctx_trace.htm

For ULINKpro see www.keil.com/support/man/docs/ulinkpro/ulinkpro_ctx_trace.htm

For Segger J-Link see http://www.keil.com/support/man/docs/jlink/jLink_cortexTrace.htm

SWO Overload:

Serial Wire Viewer data (frames) are output on the 1 pin SWO with a ULINk2 or J-Link. This pin is located on 13 on

the 20 pin legacy connector (not on Tower boards). It is also available on the 10 or 20 pin CoreSight Debug connectors.

SWO is on pin 6 on the 10 pin and pin 14 on the 20 pin. SWO is multiplexed with JTAG TDO pin. This means SWD

(Serial Wire Debug) must be used and not JTAG mode. This is easily set in µVision. SWD = SW in µVision.

SWO is one pin and it can be challenging to send a large amount of SWV data through it. A ULINKpro using

Manchester mode on the SWO pin is more efficient. For even more throughput, ULINKpro can output SWV on the 4

bit Trace Port. This port is available on most NXP Cortex-M3, M4 and M7. Cortex-M0 does not have SWV nor the

Trace Port. It does have DAP.

It is important to ensure the Serial Wire Output (SWO) pin is not overloaded. µVision will alert you when an overflow

occurs with an “X” in the Trace Records window or with a “D” or a “O” in the ULINKpro Trace Data window. µVision

easily recovers from these overflows and immediately continues displaying the next available trace frame. Dropped

frames are somewhat the normal situation especially with many data reads and/or writes.

Variables entered in the LA with the resulting Data writes to the Trace Records window plus exceptions and interrupts

create a trace frame each time there is an event. You may have to sample a rapidly changing variable.

ULINKpro can process SWV information much faster than the ULINK2 or ULINK-ME can. This results in fewer

dropped frames especially with higher data transfer rates out the SWO pin. ULINKpro has the option of collecting

information from the 4 bit Trace Port instead of the 1 bit SWO pin. Data overruns are often associated with a fast stream

of data reads and writes which are created in the Logic Analyzer. Minimize these issues by displaying only the

information you really need or use a ULINKpro with UART Manchester or better the 4 bit Trace Port.

http://www.keil.com/support/man/docs/ulink2/ulink2_ctx_trace.htm
http://www.keil.com/support/man/docs/ulinkpro/ulinkpro_ctx_trace.htm

 Copyright © 2016 ARM Ltd. ARM Limited or its affiliates. All rights reserved.

NXP Kinetis Cortex-M4 Lab with ARM
®
 Keil™ MDK toolkit www.keil.com/NXP

22

PART C): DSP Example using ARM CMSIS-DSP Libraries:

1) DSP SINE example:

ARM CMSIS-DSP libraries are offered for ARM Cortex-M0, Cortex-M3, Cortex-M4 and Cortex-M7 processors. DSP

libraries are provided in MDK in C:\Keil_v5\ARM\Pack\ARM\CMSIS\ and www.keil.com/pack/doc/cmsis/DSP/html/

See www.arm.com/cmsis , http://community.arm.com/groups/tools/content and https://github.com/ARM-software/CMSIS_5.

You can use this example with other Kinetis boards. You might need to make some changes to the startup and system files.

This example creates a sine wave, then creates a second to act as noise, which are then added together (disturbed), and then

the noise is filtered out (filtered). The waveform in each step is displayed in the Logic Analyzer using Serial Wire Viewer.

This example incorporates the Keil RTOS RTX. RTX has a BSD (soon Apache 2) license. Source code is provided.

This program will run with P&E but to see the interesting and useful SWV features you need any ULINK or a J-Link.

1. This program was copied to C:\Keil\ARM\Boards\Freescale\TWR-K60D100M\DSP on page 5.

1. Open the project file sine.uvprojx with µVision. Connect a ULINK2, ULINKpro or J-Link to the K60 TWR board.

2. Select your debug adapter from the pull-down menu as shown here:

3. Compile the source files by clicking on the Rebuild icon. .

4. Enter Debug mode by clicking on the Debug icon. The Flash will be programmed.

Select OK if the Evaluation Mode notice appears.

TIP: The default Core Clock: is 41.94 MHz for use by the Serial Wire Viewer configuration window in the Trace tab.

1. Click on the RUN icon. Open the Logic Analyzer window.

2. This project has Serial Wire Viewer configured and the Logic Analyzer and Watch 1 loaded with the four variables.

3. Four waveforms will be displayed in the Logic Analyzer using the Serial Wire Viewer as shown below. Adjust

Zoom for an appropriate display. Displayed are 4 global variables: sine, noise, disturbed and filtered.

Trouble: If one or two variables displays no waveform, disable ITM Stimulus Port 31 in the Trace Config window. The

SWO pin is probably overloaded if you are using a ULINK2. ULINKpro handles SWV data faster than a ULINK2 or J-Link

can. Make sure the Core Clock is set to 41.94. If the variables in Watch 1 are changing, the program is running correctly.

4. Select View/Watch

Windows and select

Watch 1. The four

variables are

displayed updating

as shown below:

5. Open the Trace

Records window and

the Data Writes to

the four variables are

displayed using

Serial Wire Viewer.

When you enter a

variable in the LA,

its data write is also displayed in the Trace window. With ULINKpro you must stop the program to display the data

Trace Data window. J-Link does not display any data read or write operations. P&E has no SWV or ETM support.

6. Select View/Serial Windows/Debug (printf) Viewer. printf data is displayed from printf statements in DirtyFilter.c.

See page 18 for a description using printf and ITM.

7. Leave the program running.

8. Close the Trace Records window.

http://www.keil.com/pack/doc/cmsis/DSP/html/
http://www.arm.com/cmsis
http://community.arm.com/groups/tools/content
https://github.com/ARM-software/CMSIS_5

 Copyright © 2016 ARM Ltd. ARM Limited or its affiliates. All rights reserved.

NXP Kinetis Cortex-M4 Lab with ARM
®
 Keil™ MDK toolkit www.keil.com/NXP

23

2) Signal Timings in Logic Analyzer (LA):

1. In the LA window, select Signal Info, Show Cycles, Amplitude and Cursor.

2. Click on STOP in the Update Screen box. You could also stop the program but leave it running in this case.

3. Click somewhere interesting in the LA to set a reference cursor line.

4. Note as you hover the cursor various timing information is displayed as shown below:

3) RTX Tasks and System Awareness window:

5. Click on Start in the Update Screen box to resume the collection of data. The program must be running.

6. Open Debug/OS Support and select RTX System and Thread Viewer. A window similar to below opens up. You

may have to click on its header and drag it into the middle of the screen to comfortably view it.

7. As the various threads switch state this is displayed. Note most of the CPU time is spent in the idle daemon: it

shows as Running. The processor spends relatively little time in other tasks. You will see this illustrated clearly on

the next page. It is possible to adjust these timings to give more CPU time to various threads.

8. Set a breakpoint in each of the four tasks in DirtyFilter.c by clicking in the left margin on a grey area. Do not select

while(1) as this will not stop the program.

9. Click on Run and the program will stop here and the Task window will be updated accordingly. In the screen

below, the program stopped in the noise_gen task:

10. Clearly you can see that noise_gen was Running when the breakpoint was activated.

11. Each time you click on RUN, the next task

will display as Running.

12. Remove all the breakpoints by clicking on

each one. You can use Ctrl-B and select

Kill All.

TIP: You can set/unset hardware breakpoints

while the program is running.

TIP: Recall this window uses the CoreSight DAP

read and write technology to update this window.

Serial Wire Viewer is not used and is not required to

be activated for this window to display and be

updated.

The Event Viewer does use SWV and this is demonstrated on the next page.

 Copyright © 2016 ARM Ltd. ARM Limited or its affiliates. All rights reserved.

NXP Kinetis Cortex-M4 Lab with ARM
®
 Keil™ MDK toolkit www.keil.com/NXP

24

4) RTX Event Viewer (EV):

1. If you are using a ULINKpro, skip this step unless you want to see SWV overload.: Stop the program. Click on

Setup... in the Logic Analyzer. Select Kill All to remove all variables and select Close. This is necessary because

the SWO pin will likely be overloaded when the Event Viewer is opened up. Inaccuracies might occur.

2. Select Debug/Debug Settings.

3. Click on the Trace tab.

4. Enable ITM Stimulus Port 31.

Event Viewer uses this port to

collect its information.

5. Click OK.

6. Click on RUN .

7. Open Debug/OS Support and

select Event Viewer. The

window here opens up:

TIP: If Event Viewer is still blank, exit

and re-enter Debug mode.

Main Thread:

1. Select Stop in the Update Screen. Scroll to the beginning of the Event Viewer.

2. The first thread in this program was main() as depicted in the Event Viewer. The main thread is the main() function

in DirtyFilter.c It runs some RTX initialization code at the beginning and is stopped with osDelay(osWaitForever);.

TIP: If Event Viewer is blank or erratic, or the LA variables are not displaying or

blank: this is likely because the Serial Wire Output pin is overloaded and dropping trace

frames. Solutions are to delete some or all of the variables in the Logic Analyzer to free

up some SWO or Trace Port bandwidth. Try turning off the exceptions with EXTRC.

3. The 5 running threads plus the idle daemon are displayed on the Y axis. Event

Viewer shows which thread is running, when and for how long.

4. Click Stop in the Update Screen box.

5. Click on Zoom In so three or four threads are displayed as shown here:

6. Select Cursor. Position the cursor over one set of bars and click once. A red

line is set here:

7. Move your cursor to the next set and total time and difference are displayed.

8. Since you enabled Show Cycles, the total cycles and difference is also shown.

The 10 msec shown is the SysTick timer value which is set in RTX_Conf_CM.c in the

OS_CLOCK and OS_TICK variables.

Using a Keil ULINKpro:

SWV Throughput: ULINKpro is much better with SWO bandwidth issues. These have been able to display both the EV

and LA windows. See page 19. The ULINKpro ETM and ULINKpro UART are preconfigured Options for Target.

ULINKpro can also use the 4 bit Trace Port for even faster operation for SWV. Trace Port use is mandatory for ETM trace.

A ULINKpro in ETM mode provides program flow debugging, Code Coverage and Performance Analysis. ULINKpro also

supports ETB (Embedded Trace Buffer) as found in many Kinetis processors.

Exceptions: A ULINKpro displays

exceptions at the bottom of the Event

Viewer. Shown here are the SysTick and

SVCall exceptions. You can easily

measure the duration of the time spent in

the handlers. Any other exception events

such as DMA will also be displayed here.

You will be able to easily measure the time a handler runs with Event Viewer techniques you have learned.

 Copyright © 2016 ARM Ltd. ARM Limited or its affiliates. All rights reserved.

NXP Kinetis Cortex-M4 Lab with ARM
®
 Keil™ MDK toolkit www.keil.com/NXP

25

Part D) ETM Trace only with Keil ULINKpro:
Introduction:

The examples shown previously with the ULINK2 will also work with the ULINKpro. There are two major differences:

1) The window containing the trace frames is now called Trace Data. More complete filtering is available.

2) The SWV (Serial Wire Viewer) data is sent out the 1 bit SWO pin with the ULINK2 using UART encoding. The

ULINKpro can send SWV data either out this same SWO pin using Manchester encoding or through the 4 bit Trace

Port. This allows ULINKpro to support those Cortex-M processors that have SWV but not ETM and have no Trace

Port. The Trace Port is found on the 20 pin Cortex connector and is configured in the Trace configuration window.

ETM frames are always sent out the Trace Port and if this is the case, SWV data is also sent out this port.

ETB: ULINKpro can access the Embedded Trace Buffer (ETB) which is an on-chip instruction trace buffer. See

the bottom of the next page for more information.

ULINKpro offers:

1) Faster Flash programming than the ULINK2.

2) Serial Wire Viewer frames are provided at a much faster data throughput than a ULINK2 or J-Link.

3) ETM Instruction Trace is added which provides a record of all executed instructions. The Trace Data window has

Trace start and stop, filtering and ability to save records to a file.

4) Code Coverage: were all the assembly instructions executed ? This data can be saved as a report.

5) Performance Analysis: where the processor spent its time in graphical and numeical formats.

6) Execution Profiling: How long instructions, ranges of instructions, functions or C source code took in both time

and CPU cycles as well as number of times these were executed.

If you are a power user of Serial Wire Viewer and have problems with SWV signal overloads, a ULINKpro is an excellent

investment. A ULINKpro is worth the small cost and is easy to operate and analyze the results to obtain useful information.

1) Configuring ULINKpro ETM Trace:

Configuring the Connection:

1. Connect a ULINKpro to the OSJTAG J1 CoreSight ETM connector. Power the board and ULINKpro.

2. The ULINKpro is configured for SWV and ETM operation using the Trace Port in RTX_Blinky example.

.ini File:

A script must be executed upon entering Debug mode to configure the ETM registers and GPIO ports. This script is provided

as TracePort.ini and is found in C:\Keil\ARM\Boards\Freescale\TWR-K60D100M\RTX_Blinky\. This is an ASCII file.

This file is specific to Kinetis processors as their proprietary GPIO ports must be configured. Note other Kinetis processors

might need a different .ini file depending on the pins the Trace Port is located.

Entering the Initialization File:

1) Select Project/Open Project. Open C:\Keil\ARM\Boards\Freescale\TWR-K60D100M\RTX_Blinky\Blinky.uvprojx.

2) Select “UlinkPro-Flash”: The ULINKpro is pre-configured as the debug adapter.

3) Click on the Target Options icon or select “Project/Options for Target” or press Alt+F7.

4) Click on the Debug tab. Confirm TracePort.ini is in the Initialization file: box as shown below:

5) If you click on the Edit icon, TracePort.ini will be opened with the other source files. You can then view and edit it.

6) Leave this window open for the next page.

TIP: This ini file will be executed every time you enter Debug mode. In the case of

this .ini file, a µVision RESET will run it again because of the function OnResetExec.

See www.keil.com/support/man/docs/uv4/uv4_db_trace_init.htm for more

information.

TIP: If you are adapting this lab for other Kinetis boards, you may have to configure

µVision for operation with a ULINKpro. See www.keil.com/support/man/docs/ulinkpro/ulinkpro_ctx_trace.htm

The next page describes how to configure ETM.

http://www.keil.com/support/man/docs/uv4/uv4_db_trace_init.htm
http://www.keil.com/support/man/docs/ulinkpro/ulinkpro_ctx_trace.htm

 Copyright © 2016 ARM Ltd. ARM Limited or its affiliates. All rights reserved.

NXP Kinetis Cortex-M4 Lab with ARM
®
 Keil™ MDK toolkit www.keil.com/NXP

26

Configuring ETM Trace (and SWV using the 4 bit Trace port):

1) These instructions assume you are continuing from the previous page.

2) In the Options for Target window left open from the previous page, click on Settings: on the right side.

3) Click on the Trace tab. The window below is displayed.

4) Core Clock: ULINKpro does not strictly need this accurately set as the ULINK2 and J-Link do. µVision uses this to

display timing values so it is still a good idea to insert the correct clock speed of 41.94 MHz.

5) In Trace Port, select Sync Trace Port with 4-bit data. It is best to use the widest size which is 4 bits.

6) Select CLK: 0.0 ns clock delay. D0 through D3 should be set to 2.9 ns as shown below: Note: not all Kinetis

processors need these delay times. See specific examples for your processor. If ETM doesn't work try 0 or 4.9 ns.

7) Select Trace Enable and ETM Trace Enable. This enables SWV and ETM instruction traces respectively.

8) Select EXCTRC and leave everything else at default as shown below. Only ITM 31 and 0 need to be selected. The

other ITM ports are not used and are Don’t Care.

9) Click on OK twice to return to the main µVision menu. ETM and SWV are now configured through the Trace Port.

10) Select File/Save All.

TIP: We said previously that you must use SWD (also called SW) in order to use the Serial Wire Viewer. With the

ULINKpro and with the Trace Port selected, you can select the JTAG port as well as the SWD port.

ULINKpro can send the SWV signals out the 4 bit Trace Port which does not share any pins with JTAG. SWO shares the

JTAG signal TDIO hence the conflict.

Be aware these pins are usually multiplexed with GPIO pins or other peripherals. You should make appropriate allowances

for the use of these shared ports during debugging with ETM trace.

It is good engineering practice during system design to not use those pins shared with ETM for important purposes that will

preclude normal operation with ETM enabled.

Trace Port options for use with ULINKpro:

Serial Wire Output – Manchester: output SWV out SWO pin. No ETM.

Sync Trace Port with 4 bit data: ETM out Trace Port pins. Up to 4 bits.

Embedded Trace Buffer: (ETB) : a small RAM inside the Kinetis used as a trace

memory. Limited frame capture capability. ETB runs at full CPU speed.

Serial Wire Output – UART/NRZ: only for ULINK2 and J-Link. This selection will error if used with ULINKpro.

P&E does not support any of these settings. ULINK2 and J-Link support only Serial Wire Output – UART/NRZ.

A ULINKpro is an excellent investment providing good returns.

 Copyright © 2016 ARM Ltd. ARM Limited or its affiliates. All rights reserved.

NXP Kinetis Cortex-M4 Lab with ARM
®
 Keil™ MDK toolkit www.keil.com/NXP

27

2) Blinky Example: ETM Frames starting at RESET and beyond:

The project in C:\Keil\ARM\Boards\Freescale\TWR-K60D100M\RTX_Blinky has now been configured on the previous

page to provide ETM Trace and all the features it provides using a ULINKpro.

1. Compile the Blinky source files by clicking on the Rebuild icon. . You can also use the Build icon beside it.

2. Enter Debug mode. Select OK if the Evaluation Mode box appears.

3. DO NOT CLICK ON RUN YET !!! If you did, simply exit and re-enter Debug mode.

4. Open the Trace Data window by clicking on the small arrow beside the Trace icon as shown here:

5. Right click anywhere in the Trace Data window and select Show Functions. Size this window.

6. Examine the Trace Data window as shown below: This is a complete record of all the program flow since RESET

until µVision halted the program at the start of main() since Run To main is selected in µVision.

7. In this case, Time 119 790 shows the last instruction to be executed. (BX lr). This is the jump to main().

8. The last two entries are an Exception entry (SVCall) and a Exception Return. The red D indicates a trace overflow.

9. In the Register window the PC will display the value of the next instruction to be executed (0x000 077E in my case).

Click on Single Step once.

10. The instruction BL.W will display at 0x0000 077E:

11. Scroll to the top of the Trace Data window to the first frame. This is the first instruction executed after the initial

RESET sequence. In this case it is a LDR instruction in the RESET_Handler function as shown below:

12. If you use the Memory window to look at location 0x4, you will find the address of the first instruction there and

this will match with that displayed in frame # 1. In my case it is 0x0000 08B5 + 1 = 0x08B4 (+1 says it is a

Thumb instruction). These first instructions after RESET are shown below: Note the source information that is

displayed including which function and instruction belongs to. The first occurrence in a function is highlighted in

orange to make the start of functions easier to find.

13. If you double-click on any line, this will be highlighted in both the Disassembly and relevant source windows.

TIP: If you unselect Run to main() in the Debug tab, no instructions will be executed when you enter Debug mode. The PC

will equal 0x08B4. You can run or single-step from that point and this will be recorded in the Trace Data window.

ETM trace provides a powerful tool for finding nasty bugs not easily found any other way. See page 33 for a list.

 Copyright © 2016 ARM Ltd. ARM Limited or its affiliates. All rights reserved.

NXP Kinetis Cortex-M4 Lab with ARM
®
 Keil™ MDK toolkit www.keil.com/NXP

28

3) Finding the Trace Frames you are looking for:

Capturing all the instructions executed is possible with ULINKpro but this might not be practical. It is not easy sorting

through millions and billions of trace frames or records looking for the ones you want. You can use Find, Trace Triggering,

Post Filtering or save everything to a file and search with a different application program such as a spreadsheet.

Trace Filters:

In the Trace Data window you can select various types of frames to be displayed. Open the Display:

box and you can see the various options available as shown here: These filters are post collection.

Future enhancements to µVision will allow more precise filters to be selected.

Find a Trace Record:

In the Find a Trace Record box enter bx as shown here:

You can select properties where you want to search in the “in” box. "All" is shown in the screen above:

Select the Find a Trace Record icon and the Find Trace window screen

opens as shown here: Click on Find Next and each time it will step through

the Trace records highlighting each occurrence of the instruction bx.

TIP: Or you can press Enter to go to the next occurrence of the search term.

Trace Triggering:

µVision has three trace triggers currently implemented:

1. TraceRun: Starts ETM trace collection when encountered.

2. TraceSuspend: Stops ETM trace collection when encountered. TraceRun has to have first been set and

encountered to start the trace collection for this trigger to have an effect.

3. TraceHalt: Stops ETM trace, SWV and ITM. Trace collection can be resumed only with a STOP/RUN sequence.

TraceStart will not restart it.

They are selected from the menu shown here:

This menu is accesses by right-clicking on a valid line.

TIP: These trace commands have no effect on SWV or ITM. TraceRUN starts the ETM trace and TraceSuspend and

TraceHalt stops it.

How it works:

When you set a TraceRun point in assembly language point, ULINKpro will start collecting trace records. When you set a

TraceSuspend point, trace records collection will stop there. EVERYTHING in between these two times will be collected.

This includes all instructions through any branches, exceptions and interrupts.

Sometimes there is some skid past the trigger point which is a normal operation.

Trace Commands:

There are a series of Trace Commands you can enter in the Command window while in Debug mode.

See www.keil.com/support/man/docs/uv4/uv4_debug_commands.htm

TL - Trace List: list all tracepoints.

TK - Trace Kill: tk* kills all tracepoints or tk number only a specified one i.e. tk 2.

TIP: TK* is very useful for deleting tracepoints when you can't find them in the source or Disassembly windows.

TL is useful for finding any tracepoints set. Results are displayed in the Command window.

http://www.keil.com/support/man/docs/uv4/uv4_debug_commands.htm

 Copyright © 2016 ARM Ltd. ARM Limited or its affiliates. All rights reserved.

NXP Kinetis Cortex-M4 Lab with ARM
®
 Keil™ MDK toolkit www.keil.com/NXP

29

4) How to Set Trace Triggers:

1. Stop the program and stay in Debug mode.

2. In Blinky.c, click inside the function LED_Off near line 60 or 61 to highlight the code in the Disassembly window.

3. Right-click on LDR at 0x654 in the Disassembly window (just after line 62). (your addresses might be different)

4. Select Insert Tracepoint at 0x0654 and select TraceRun (ETM). A cyan T will appear as shown below:

5. Right-click on LDR in left margin at 0x065A as shown below in the Disassembly window:

6. Select Insert Tracepoint at 0x065A and select

TraceSuspend (ETM). A cyan T will appear.

7. Clear the Trace Data window for

convenience. This is an optional step.

8. Click RUN and after a few seconds click STOP.

9. Filter exceptions out by selecting ETM – Code

Exec in the Display in the Trace Data window:

10. Examine the Trace Data window as shown

below:

You can see below where the trace started on 0x654

and stopped on 0x65A:

All other frames are discarded.

11. In the Command window, enter TL and press

Enter. The two Trace points are displayed.

12. Enter TK* and press Enter to delete all

Tracepoints.

Trace Skid:

The trace triggers use the same CoreSight hardware as the Watchpoints. This means that it is possible a program counter skid

might happen. The program might not start or stop on the exact location you set the trigger to.

You might have to adjust the trigger point location to minimize this effect.

This is because of the nature of the comparators in the CoreSight module and is normal behavior.

 Copyright © 2016 ARM Ltd. ARM Limited or its affiliates. All rights reserved.

NXP Kinetis Cortex-M4 Lab with ARM
®
 Keil™ MDK toolkit www.keil.com/NXP

30

5) Code Coverage:

1. Click on the RUN icon. After a second or so stop the program with the STOP icon.

2. Examine the Disassembly and Blinky.c windows. Scroll and notice different color blocks in the left margin:

3. This is Code Coverage provided by ETM trace. This indicates if an instruction has been executed or not.

Colour blocks indicate which assembly instructions have been executed.

1. Green: this assembly instruction was executed.

2. Gray: this assembly instruction was not executed.

3. Orange: a Branch is never taken.

4. Cyan: a Branch is always taken.

5. Light Gray: there is no assembly instruction here.

6. RED: Breakpoint is set here. (is actually a circle)

7. The next instruction to be executed.

In the window on the right you can easily see examples of each type of

Code Coverage block and if they were executed or not and if branches were taken (or not).

TIP: Code Coverage is visible in both the Disassembly and source code windows. Click on a line in one and this place will

be matched in the other.

In the window above, why was 0x0000_0ACA never executed ? You should devise tests to execute instructions that have

not been executed. What will happen to your program if this untested instruction is unexpectedly executed ?

Code Coverage tells what assembly instructions were executed. It is important to ensure all assembly code produced by the

compiler is executed and tested. You do not want a bug or an unplanned circumstance to cause a sequence of untested

instructions to be executed. The result could be catastrophic as unexecuted instructions have not been tested. Some agencies

such as the US FDA require Code Coverage for certification. This is provided in MDK µVision using ULINKpro.

Good programming practice requires that these unexecuted instructions be identified and tested.

Code Coverage is captured by the ETM. Code Coverage is also available in the Keil Simulator.

A Code Coverage window is available as shown below. This window is available in View/Analysis/Code Coverage.

The next page describes how you can save Code Coverage information to a file.

 Copyright © 2016 ARM Ltd. ARM Limited or its affiliates. All rights reserved.

NXP Kinetis Cortex-M4 Lab with ARM
®
 Keil™ MDK toolkit www.keil.com/NXP

31

6) Saving Code Coverage information:

Code Coverage information is temporarily saved during a run and is displayed in various windows as already shown.

It is possible to save this information in an ASCII file for use in other programs.

TIP: To get help on Code Coverage, type Coverage in the Command window and press the F1 key.

You can Save Code Coverage in two formats:

1. In a binary file that can be later loaded back into µVision. Use the command Coverage Save filename.

2. In an ASCII file. You can either copy and paste from the Command window or use the log command:

1) log > c:\cc\test.txt ; send CC data to this file. The specified directory must exist.

2) coverage asm ; you can also specify a module or function.

3) log off ; turn the log function off.

1) Here is a partial display using the command coverage. This displays and optionally saves everything.

\\Blinky\Blinky.c\SysTick_Handler - 100% (6 of 6 instructions executed)

\\Blinky\Blinky.c\main - 92% (89 of 96 instructions executed)

 3 condjump(s) or IT-bcock(s) not fully executed

\\Blinky\Blinky.c\Delay - 100% (9 of 9 instructions executed)

\\Blinky\system_MK60N512MD100.c\SystemInit - 100% (34 of 34 instructions executed)

 2 condjump(s) or IT-bcock(s) not fully executed

\\Blinky\system_MK60N512MD100.c\SystemCoreClockUpdate - 31% (36 of 116 instructions executed)

 5 condjump(s) or IT-bcock(s) not fully executed

\\Blinky\startup_MK60N512MD100.s__asm_0x27C - 47% (9 of 19 instructions executed)

\\Blinky\startup_MK60N512MD100.s\Reset_Handler - 100% (4 of 4 instructions executed)

\\Blinky\startup_MK60N512MD100.s\NMI_Handler - 0% (0 of 1 instructions executed)

\\Blinky\startup_MK60N512MD100.s\HardFault_Handler - 0% (0 of 1 instructions executed)

\\Blinky\startup_MK60N512MD100.s\MemManage_Handler - 0% (0 of 1 instructions executed)

2) The command coverage asm produces this listing (partial is shown):

\\Blinky\Blinky.c\SysTick_Handler - 100% (6 of 6 instructions executed)

 EX | 0x000002B8 SysTick_Handler:

 EX | 0x000002B8 483D LDR r0,[pc,#244] ; @0x000003B0

 EX | 0x000002BA 6800 LDR r0,[r0,#0x00]

 EX | 0x000002BC 1C40 ADDS r0,r0,#1

\\Blinky\Blinky.c\main - 92% (89 of 96 instructions executed)

 3 condjump(s) or IT-bcock(s) not fully executed

 EX | 0x000002C4 main:

 EX | 0x000002C4 F04F34FF MOV r4,#0xFFFFFFFF

 EX | 0x000002C8 2501 MOVS r5,#0x01

 EX | 0x000002CA F000F8CB BL.W SystemCoreClockUpdate (0x00000464)

The first column above describes the execution as follows:

NE Not Executed

FT Branch is fully taken

NT Branch is not taken

AT Branch is always taken.

EX Instruction was executed (at least once)

3) Shown here is an example using:
 coverage \Blinky\main details

If the log command is run, this will be

saved/appended to the specified file.

You can enter the command coverage with various

options to see what is displayed.

 Copyright © 2016 ARM Ltd. ARM Limited or its affiliates. All rights reserved.

NXP Kinetis Cortex-M4 Lab with ARM
®
 Keil™ MDK toolkit www.keil.com/NXP

32

7) Performance Analysis (PA):

Performance Analysis tells you how much time was spent in each function. It is useful to optimize your code for speed.

Keil provides Performance Analysis with the µVision simulator or with ETM and the ULINKpro. The number of total calls

made as well as the total time spent in each function is displayed. A graphical display is generated for a quick reference. If

you are optimizing for speed, work first on those functions taking the longest time to execute.

1. Use the same setup as used with Code Coverage.

2. Select View/Analysis Windows/Performance Analysis. A window similar to the one below will open up.

3. Exit Debug mode and re-enter it. This clears the PA window and resets the Kinetis processor and reruns to

main(). You might have to cycle the power to the ULINKpro and the TWR board to get this exact window below.

This will remove any artifacts left over. Close and restart µVision if necessary.

4. Do not click on RUN yet Expand some of the module names as shown below.

5. Shown is the number of calls and percentage of total time in this short run from RESET to the beginning of main().

6. Click on the RUN icon. See the PA window below:

7. Note the display changes in real-time while the program Blinky is running. There is no need to stop the processor to

collect the information. No code stubs are needed in your source files. Most time is spent in the Delay function.

8. Select Functions from the pull down box as shown here and notice the difference.

9. Exit and re-enter Debug mode again and click on RUN. Note the different data set displayed.

TIP: You can also click on the RESET icon but the processor will stay at the initial PC and will

not run to main(). You can type g, main in the Command window to accomplish this.

10. Click on the PA RESET icon. Watch as new data is displayed in the PA window.

11. When you are done, STOP and exit Debug mode .

TIP: The Performance Analyzer uses ETM to collect its raw data.

 Copyright © 2016 ARM Ltd. ARM Limited or its affiliates. All rights reserved.

NXP Kinetis Cortex-M4 Lab with ARM
®
 Keil™ MDK toolkit www.keil.com/NXP

33

8) Execution Profiling:

Execution profiling is used to display how much time a C source line took to execute and how many times it was called. This

information is provided by the ETM trace in real time while the program keeps running.

The µVision simulator also provides Execution Profiling.

1. Enter Debug mode.

2. Select Debug/Execution Profiling/Show Time.

3. Click on RUN.

4. In the left margin of the disassembly and C source

windows will display various time values.

5. The times will start to fill up as shown below:

6. Click inside the yellow margin of Blinky.c to refresh it.

7. This is done in real-time and without stealing CPU cycles.

8. Hover the cursor over a time and ands more information appears as in the yellow box here:

9. Recall you can also select Show Calls and this information rather than the execution times will be displayed in the

left margin.

Outlining:

Each place there is a small square with a “-“ sign can be collapsed down to compress the associated source files together.

1) Click in the square near the while(1) loop near line 33 as shown here:

2) The C source in the function LED_Initialize is now collapsed into one line.

3) The times are added together to 1.717 usec

in this case:

4) This can be useful to hide sections of code

to simplify the window you are reading.

5) Click on the + to expand it.

6) Stop the program

7) Exit Debug mode .

 Copyright © 2016 ARM Ltd. ARM Limited or its affiliates. All rights reserved.

NXP Kinetis Cortex-M4 Lab with ARM
®
 Keil™ MDK toolkit www.keil.com/NXP

34

9) In-the-Weeds Example: (your addresses might not be the same as shown here)

Some of the hardest problems to solve are those when a crash has occurred and you have no clue what caused this – you only

know that it happened and the stack is corrupted or provides no useful clues. Modern programs tend to be asynchronous with

interrupts and RTOS task switching plus unexpected and spurious events. Having a recording of the program flow is useful

especially when a problem occurs and the consequences are not immediately visible. Another problem is detecting race

conditions and determining how to fix them. ETM trace handles these problems and others easily and it is not hard to use.

If a Bus Fault occurs in our example, the CPU will end up at 0x08BE as shown in the Disassembly window below. This is

the Bus Fault handler. This is a branch to itself and will run this instruction forever. The trace buffer will save millions of

the same branch instructions. This is not very useful.

This exception vector is found in the file startup_MK60D10.s.

If we set a breakpoint by clicking on the Hard Fault Handler

and run the program: at the next Bus Fault event the CPU will

again jump to the HardFault_Handler.

The difference this time is the breakpoint will stop the CPU and

also the trace collection. The trace buffer will be visible and

useful to investigate and determine the cause of the crash.

1. Use the RTX_Blinky example from the previous exercise, enter Debug mode.

2. Locate the Hard Fault near address 0x08BE in the Disassembly window or near line 489 in startup_MK60D10.s.

3. Set a breakpoint at this point. A red circle will appear. You can do this in Edit or Debug mode in the .s file.

4. In the Command window enter: g, LED_On and press ENTER. This will put the PC at the start of this function.

LED_On returns with a BX lr; near address 0x64E which we will use to create a Hard Fault by using lr = 0.

5. The assembly and sources in the Disassembly window do not always match up and this is caused by anomalies in

ELF/DWARF specification. In general, scroll downwards in this window to provide the best match.

6. Clear the Trace data window by clicking on the Clear Trace icon: This is to help clarify what is happening.

7. In the Register window, double-click on R14 (LR) register and set it to zero. This is guaranteed to cause a Hard

Fault when the processor tries to execute an instruction at 0x2001 10F8. This is the initial SP address.

8. Click on RUN and almost immediately the program will stop on the Hard Fault exception branch instruction.

9. In the Trace Data window you will find the LED_On function with the BX LR at the end. This is what caused the

Hard Fault since you set lr = 0. When the function tried to return, the bogus value of lr caused a Hard Fault.

10. The B instruction at the Hard Fault vector was not executed because ARM CoreSight hardware breakpoints do not

execute the instruction they are set to when they stop the program. They are no-skid breakpoints.

11. Click on Single Step. You will

now see the Hard Fault branch as

shown in the bottom screen:

This example clearly shows how quickly ETM

trace can help debug program flow bugs.

Exception Entry: Note at the top the Hard

fault exception is listed. How can this happen

before the Hard Fault happens ? This entry is

part of SWV – the timestamps are different for

SWV and ETM instructions so they can be out

of sync. Use Display: to filter out such events.

TIP: Instead of setting a breakpoint on the

Hard Fault vector, you could also right-click

on it and select Insert Tracepoint at line 489…

and select TraceHalt. When Hard Fault is

reached is reached, trace collection will halt

but the program will keep executing forever.

12. Exit Debug mode.

 Copyright © 2016 ARM Ltd. ARM Limited or its affiliates. All rights reserved.

NXP Kinetis Cortex-M4 Lab with ARM
®
 Keil™ MDK toolkit www.keil.com/NXP

35

10) Serial Wire and ETM Trace Summary:

We have several basic debug systems implemented in Kinetis Cortex-M4 devices:

1. SWV and ITM data output on the SWO pin located on the JTAG/SWD 10 pin CoreSight debug connector. The 20

pin connector adds ETM trace.

2. ITM is a printf type viewer. ASCII characters are displayed in the Debug printf Viewer in µVision.

3. Non-intrusive Memory Reads and Writes in/out the JTAG/SWD ports (DAP).

4. Breakpoints and Watchpoints are set/unset through the JTAG/SWD ports.

5. ETM provides a record of all instructions executed. ETM also provides Code Coverage and Performance Analysis.

These features are completely controlled through µVision via a ULINK.

These are the types of problems that can be found with a quality ETM trace:

SWV Trace adds significant power to debugging efforts. Problems which may take hours, days or even weeks in big projects

can often be found in a fraction of these times with a trace. Especially useful is where the bug occurs a long time before the

consequences are seen or where the state of the system disappears with a change in scope(s) or RTOS thread switches.

Usually, these techniques allow finding bugs without stopping the program. These are the types of problems that can be

found with a quality trace: Some of these items need ETM trace.

1) Pointer problems.

2) Illegal instructions and data aborts (such as misaligned writes). How I did I get to this Fault vector ?

3) Code overwrites – writes to Flash, unexpected writes to peripheral registers (SFRs). How did I get here ?

4) A corrupted stack.

5) Out of bounds data. Uninitialized variables and arrays.

6) Stack overflows. What causes the stack to grow bigger than it should ?

7) Runaway programs: your program has gone off into the weeds and you need to know what instruction caused this.

This is probably the most important use of trace.

8) Communication protocol and timing issues. System timing problems.

9) Trace adds significant power to debugging efforts. Tells you where the program has been.

10) Weeks or months can be replaced by minutes.

11) Especially where the bug occurs a long time before any consequences are seen.

12) Or where the state of the system disappears with a change in scope(s).

13) Plus - don’t have to stop the program to test conditions. Crucial to some applications.

14) A recorded history of the program execution in the order it happened. Source and Disassembly is as it was written.

15) Trace can often find nasty problems very quickly.

16) Profile Analysis and Code Coverage is provided. Available only with ETM trace.

What kind of data can the Serial Wire Viewer display ?

1. Global variables.

2. Static variables.

3. Structures.

4. Can see Peripheral registers – just read or write to them. The same is true for memory locations.

5. Can see executed instructions. SWV only samples them. Use ETM to capture all instructions executed.

6. CPU counters. Folded instructions, extra cycles and interrupt overhead.

What Kind of Data the Serial Wire Viewer can’t display…

1. Can’t see local variables. (just make them global or static).

2. Can’t see register operations. PC Samples records some of the instructions but not the data values.

3. SWV can’t see DMA transfers. This is because by definition these transfers bypass the CPU. SWV and ETM can

only see CPU actions. If using a ULINKpro and RTX, DMA exceptions will display in the Event Viewer.

 Copyright © 2016 ARM Ltd. ARM Limited or its affiliates. All rights reserved.

NXP Kinetis Cortex-M4 Lab with ARM
®
 Keil™ MDK toolkit www.keil.com/NXP

36

Part E:

1) Creating your own MDK 5 project from scratch:

All examples provided by Keil are pre-configured. All you have to do is compile them. You can use them as a starting point

for your own projects. However, we will start this example project from the beginning to illustrate how easy this process is.

Once you have the new project configured; you can build, load and run a bare metal (no OS) Blinky example. It will have a

simple incrementing counter to monitor. However, the processor startup sequences are present and you can easily add your

own source code and/or files. You can use this process to create any new project, including one using an RTOS.

Install the Software Pack for your processor:

1. Start µVision and leave it in Edit mode. Do not enter Debug mode. A project must be loaded. Any project at all.

2. Pack Installer: The Keil::Kinetis_K60_DFP Software Pack must be installed. This was done on page 4.

Create a new Directory and a New Project:

3. In the main µVision menu, select Project/New µVision

Project… Create New Project window opens:

4. In this window, shown here, navigate to the folder

C:\00MDK\Boards\Freescale\TWR-K60D100M\

5. Right click in this window and select New and create a new

folder. I called it BlinkyNEW.

6. Double click on BlinkyNew to open it or highlight it and

select Open.

7. In the File name: box, enter Blinky. Click on Save.

8. This creates the project Blinky.uvproj. (MDK 4 format)

9. The Select Device for Target…opens:

Select the Device you are using:

1. Expand NXP and then select MK60DN512xx10 as shown here:

TIP: Make sure you select the deepest layer device or this will not work correctly.

2. Click OK and the Manage Run Time window shown below right opens.

Select the CMSIS components you want:

1. Expand CMSIS and Device. Select CORE and Startup as shown below. They will be

highlighted in Green indicating there are no other files needed. Click OK to close.

2. Click on File/Save All or select the Save All icon:

3. The project Blinky.uvproj will now be changed to Blinky.uvprojx. (MDK 4 MDK 5 format)

4. You now have a new project list as shown on the bottom left below: The CMSIS files you selected have been

automatically entered and configured into your project for your selected processor.

5. Note the Target Selector says Target 1. Highlight Target 1 in the Project window.

6. Click once on it and change its name to ULINK2 Flash and press Enter. The Select Target name will also change.

What has happened to this point:

You have created a blank µVision project using MDK 5

Software Packs. All you need to do now is add your own

source files and select your debug adapter. The Software

Pack has pre-configured many settings for your

convenience.

 Copyright © 2016 ARM Ltd. ARM Limited or its affiliates. All rights reserved.

NXP Kinetis Cortex-M4 Lab with ARM
®
 Keil™ MDK toolkit www.keil.com/NXP

37

Create a blank C Source File:

1. Right click on Source Group 1 in the Project window and select .

2. This window opens up:

3. Highlight the upper left icon: C file (.c):

4. In the Name: field, enter Blinky.

5. Click on Add to close this window.

6. Click on File/Save All or

7. Expand Source Group 1 in the Project window and

Blinky.c will now display. It is a blank file.

Add Some Code to Blinky.c:

1. Right click in Blinky.c and select Insert '#include file'.

2. Select MK60D10.h. This will be added to Blinky.c

3. In the blank Blinky.c, add the C code below:

4. Click on File/Save All or

5. Build the files. There will be no errors or warnings if all was entered correctly.

TIP: You can also add existing source files:

Configure the Target Flash: Please complete these instructions carefully to prevent unusual problems…

1. Select the Target Options icon . Select the Target tab. Note the Flash and RAM addresses are already entered.

2. Select Use MicroLIB to optimize for smaller code size. An error will be generated if you cannot use this feature.

3. Select the Linker tab. Select Use Memory Layout from Target Dialog.

4. Click on the Debug tab. Select the debugger you are using in the Use: box:

You can use a P&E, ULINK2, ULINKpro or a J-Link. It is possible to use a CMSIS-DAP compliant adapter.

5. Connect your NXP TWR to your PC USB port. If using an external adapter such as a ULINK2, connect it now.

6. Select Settings: box beside Use ULINK2/ME Debugger as shown above.

7. Set SW and SWJ as shown here: If your TWR board is connected to your PC, you should now see a

valid IDCODE and Device Name in the SW Device box. If you do not, you must correct this before continuing.

8. Click on the Flash Download tab. Confirm the correct Flash algorithms are present: Shown here are the correct

ones for the K60D100M TWR board:

9. Click on OK twice to return to the main menu.

10. Click on File/Save All or

11. Build the files. There will be no errors or warnings if all was entered correctly. If there are, please fix them !

The Next Step ? First we will do a summary of what we have done so far and then ….

Let us run your program and see what happens ! Please turn the page….

#include "MK60D10.h" //Device Header

unsigned int counter = 0;

/*---

 MAIN function

 ---/

int main (void) {

 while(1) {

 counter++;

if (counter > 0x0F) counter = 0;

}

} //make sure you add a CR Carriage Return or Enter after the last parentheses.

 Copyright © 2016 ARM Ltd. ARM Limited or its affiliates. All rights reserved.

NXP Kinetis Cortex-M4 Lab with ARM
®
 Keil™ MDK toolkit www.keil.com/NXP

38

Running Your Program:

1. Enter Debug mode by clicking on the Debug icon . The Flash will be programmed.

2. Click on the RUN icon. Note: you stop the program with the STOP icon.

3. Right click on counter in Blinky.c and select Add 'counter' to … and select Watch 1.

4. counter should be updating as shown here:

5. You can also set a breakpoint in Blinky.c and the program should stop at

this point if it is running properly. If you do this, remove the breakpoint.

6. You are now able to add your own source code to create a meaningful

project. You can select software components in the Manage Run-time

Environment window. You can experiment with this later.

TIP: Watch 1 is updated periodically, not when a variable value changes. Since Blinky is running very fast without any

time delays inserted, the values in Watch 1 will appear to jump and skip some sequential values that you know must exist.

Configuring the CPU Clock:

The file system_MK60D10.c contains the CPU clock setup code. This project is running at the default of 41.94 MHz.

7. In Blinky.c, near line 7, just after int main(void) {, add this line:

8. Click on File/Save All or

9. Build the files. There will be no errors or warnings.

10. Enter Debug mode. The Flash will be programmed.

11. In Watch 1, double click on <Enter expression> and enter SystemCoreClock and press Enter.

12. Right click on SystemCoreClock in Watch1 and unselect Hexadecimal Display.

13. The CPU speed is displayed as 41.94 MHz as shown in the global variable SystemCoreClock in Watch 1.

14. Click on the RUN icon.

15. Stop the CPU. and exit Debug mode.

What we have so far ?

1. A project has been created in C:\00MDK\Boards\Freescale\TWR-K60D100M\\BlinkyNEW\

2. The folders have been created as shown here:

3. RTE contains the CMSIS-Core startup and system files.

4. The Software Pack has pre-configured many items in this new project for your convenience.

7 SystemCoreClockUpdate();

What else can we do ?

5. You can create new source files using the Add New Item window. See the top of the previous page.

6. You can add existing source files by right clicking on a Group name and selecting Add Existing Files.

7. You can easily add NXP example files to your project. You can use Professor Expert to help you.

8. If you use RTX or Keil Middleware, source and template files are provided in the Add New window.

9. Now, we will add RTX to your new project !

 Copyright © 2016 ARM Ltd. ARM Limited or its affiliates. All rights reserved.

NXP Kinetis Cortex-M4 Lab with ARM
®
 Keil™ MDK toolkit www.keil.com/NXP

39

2) Adding RTX to your MDK 5 project:

Software Packs contain the code needed to add RTX to your project. RTX is CMSIS-RTOS compliant.

Configuring RTX is easy in MDK 5. These steps use the preceding Blinky example you constructed.

1. Using the same example from the preceding pages, Stop the program and Exit Debug mode.

2. Open the Manage Run-Time Environment window:

3. Expand all the elements as shown here:

4. Select Keil RTX as shown and click OK.

5. Appropriate RTX files will be added to your project. See the Project window.

6. In Blinky.c, on the first line, right click and select Insert '# include file'. Select

"cmsis_os.h". This will be added as the first line in Blinky.c.

Configure RTX:

1. In the Project window, expand the CMSIS group.

2. Double click on RTX_Conf_CM.c to open it.

3. Select the Configuration Wizard tab at the bottom of this window: Select Expand All.

4. The window is displayed here:

5. Select Use Cortex-M SysTick Timer as RTX Kernel Timer.

6. Set Timer clock value: to 41940000 as shown: (41.94 MHz)

7. Use the defaults for the other settings.

Build and Run Your RTX Program:

1. Click on File/Save All or

2. Build the files. There will be no errors or warnings.

3. Enter Debug mode: Click on the RUN icon.

4. Select Debug/OS Support/System and Thread Viewer. The

window below opens up.

5. You can see three threads: the main thread is the only one

running. As you add more threads to create a real RTX

program, these will automatically be added to this window.

6. Stop the program and Exit Debug mode.

What you have to do now:

1. You must add the RTX framework into your code and create your threads to make this into a real RTX project.

2. Getting Started MDK 5: Obtain this

useful book here: www.keil.com/gsg/.

It has information on implementing

RTX as well as other subjects.

3. You can use the Event Viewer to

examine your threads graphically if

you have a ULINK2, ULINKpro or a

J-Link. Event Viewer uses SWV

which is not yet supported by P&E.

TIP: The Configuration Wizard is a scripting

language as shown in the Text Editor as comments starting such as a </h> or <i>. See www.keil.com/support/docs/2735.htm

for instructions on how to add this feature to your own source code.

http://www.keil.com/gsg/
http://www.keil.com/support/docs/2735.htm

 Copyright © 2016 ARM Ltd. ARM Limited or its affiliates. All rights reserved.

NXP Kinetis Cortex-M4 Lab with ARM
®
 Keil™ MDK toolkit www.keil.com/NXP

40

3) Adding a Thread to your RTX_Blinky:

We will create and activate a thread. We will add an additional variable counter2 that will be incremented by this new

thread.

1. In Blinky.c, add this line near line 5: unsigned int counter2 = 0;

Create the Thread job1:

2. Add this code before main():

This will be the new thread named job1.

osDelay(500) delays the program by

500 clock ticks to slow it down so we

can easier see the values of counter and

counter2 increment by 1.

Add osDelay to main():

3. Add this line just after the if statement near line 20:

Define and Create the Thread:

1. Add this line near line 15 just before main():

2. Create the thread job1 near line 18 just

after main() and before the while(1) loop:

3. Click on File/Save All or

4. Build the files. There will be no errors or warnings. If there are, please fix them before continuing.

5. Enter Debug mode: Click on the RUN icon.

6. Right click on counter2 in Blinky.c and select Add counter2 to … and select Watch 1.

7. Both counter and counter2 will increment but slower than before:

The two osDelay(500) function calls each slow the program down by 500

msec. This makes it easier to watch these two global variables increment.

TIP: osDelay() is a function provided by RTX and is triggered by the SysTick timer.

8. Open the System and Thread Viewer by selecting Debug/OS Support.

9. Note that job1 has now been added as a thread as shown below:

10. Note os_idle_demon is always labelled as Running. This is because the program spends most of its time here.

11. Set a breakpoint in job1 and the program will stop there and job1 is displayed as "Running" in the Viewer.

12. Set another breakpoint in the while(1) loop in main() and each time you click RUN, the program will change

threads.

13. There are many attributes of RTX you can add. RTX help files are located here depending on your CMSIS version:

C:/Keil_v5/ARM/Pack/ARM/CMSIS/x.x.x/CMSIS/Documentation/RTX/html/index.html.

14. Remove any breakpoints you have created.

On the next page, we will

demonstrate the Event Viewer. For

this you must use a Keil ULINK2,

ULINKpro or a Segger J-Link.

RTX will be part of the new CMSIS 5

See https://github.com/ARM-

software/CMSIS_5

.

4 unsigned int counter2 = 0;

7 void job1 (void const *argument) {

8 for (;;) {

9 counter2++;

10 if (counter2 > 0x0F) counter2=0;

11 osDelay(500);

12 }

13 }

15 osThreadDef(job1, osPriorityNormal, 1, 0);

18 osThreadCreate(osThread(job1), NULL);

20 osDelay(500);

https://github.com/ARM-software/CMSIS_5
https://github.com/ARM-software/CMSIS_5

 Copyright © 2016 ARM Ltd. ARM Limited or its affiliates. All rights reserved.

NXP Kinetis Cortex-M4 Lab with ARM
®
 Keil™ MDK toolkit www.keil.com/NXP

41

4) Viewing RTX Thread Timing: Requires a Keil ULINK2/ME, ULINKpro or a Segger J-Link.

The Event Viewer displays threads running in a graphical format. It is possible to make timing measurements.

The Event Viewer uses Serial Wire Viewer (SWV). The P&E debug adapter does not support SWV. In order to do the

exercise on this page, you must use any Keil ULINK or a J-Link. A ULINK2 is better and a ULINKpro is best for SWV.

This page assumes you are running your Blinky with any ULINK or a J-Link connected to your TWR-K60D100M board.

Configure SWV:

1. Stop the program and Exit Debug mode.

2. Select the Target Options icon .

3. Click on the Debug tab. Select the debugger you are using in the Use: box: This is for ULINK2:

4. Click on Settings on the right side of the target Options window. The Cortex-M Target Driver Setup window opens.

5. Set SW as shown here: JTAG does not support SWV. If your TWR board is connected to your PC, you

should now see a valid IDCODE and Device Name in the SW Device box.

If you do not, you must correct this before continuing.

6. Set Max. Clock: to 2 MHz. If this value is too high, Flash programming might not work reliably resulting in an

error.

7. Select the Trace tab. Select Core Clock: to 41.94 (41.94 MHz). Select Trace Enable.

8. Unselect EXCTRC to minimize potential SWO overflows. This might not be needed. You can experiment later .

9. Click OK twice to close the Target configuration windows.

10. Click on File/Save All or SWV is now configured.

Run Blinky and Open Event Viewer:

1. Enter Debug mode: Click on the RUN icon.

2. The program should be running as shown in the System and Thread Viewer as shown on the previous page.

Viewing this window gives a good indication RTX is configured and running properly.

3. Select Debug/OS Support and select Event Viewer.

4. This window will open and if SWV is correctly configured, the threads will be visible.

5. Use the In and/or Out buttons to select an appropriate horizontal scale.

6. The space between the same thread is 5 msec. This is 5 times the tick rate as set in the RTX config file.

7. Note the program spends most of its time in Idle (os demon). This can be modified in your program.

The next section describes how to create a µVision project from NXP Kinetis Expert.

 Copyright © 2016 ARM Ltd. ARM Limited or its affiliates. All rights reserved.

NXP Kinetis Cortex-M4 Lab with ARM
®
 Keil™ MDK toolkit www.keil.com/NXP

42

5) Using Kinetis Expert to create a MDK 5 Project:

Kinetis Expert is a utility provided by NXP to simplify creating and configuring Kinetis devices. A MDK 5 .uvprojx is

created that can be directly loaded into µVision, compiled and run. You can then add your own source code and debug it all.

Starting and Configuring Kinetis Expert:

1. The URL for Kinetis Expert is http://kex.nxp.com

2. You will need to create an account and sign in:

3. In the System Configuration Tool (http://kex.nxp.com/en/welcome): select Build an SDK:

4. Select the Configurations: button: This is at http://kex.nxp.com/en/summary.

5. The page (http://kex.nxp.com/en/configs) will open. Select New Configuration:

6. Select the processor or board you are using: Name this configuration and click Select configuration:

7. In the Kinetis SDK Summary page your board or processor will be displayed.

8. Select SDK 2.0 (or the latest), Keil MDK and Windows as shown here:

9. Unselect any RTOSs selected. We do not need or want an RTOS at this time for simplicity.

Building and Downloading Your Kinetis MDK Project:

1. Select Build SDK package: You will be prompted with the progress.

2. When the Build is completed this icon will briefly display:

3. The Software Vault icon will indicated the number of files in it:

4. Click the Software vault icon and download the project to your PC. It will be a .zip file.

5. Extract this file into a suitable folder: I used C:\00MDK\Boards\Freescale\TWR-K60D100M\KEX\ It will be in a

sub-folder with the name of the SDK: In this case it is \SDK_2.0_TWR-K60D100M

6. You can explore and see the many other examples and useful code is present.

7. You should also explore the Pins Tool in Kinetis Expert:

Importing an Example into uVision:

1. We will use the example Bubble which uses the accelerometer to change the display of the LEDS.

2. In µVision, select Project/Open Project and navigate to:

C:\00MDK\Boards\Freescale\TWR-K60D100M\KEX\SDK_2.0_TWR-K60D100M\boards\twrk60d100m\demo_apps\bubble

3. In the MDK folder is the project bubble.uvprojx. Highlight this and select Open. Bubble will open in µVision.

Build and Run Bubble: (using P&E OSJTAG: See page 9 for instructions to configure this)

1. Build the files. There will be no errors or warnings. If there are, please fix them before continuing.

2. Connect the K60 board to your PC with a USB cable. The P&E debug adapter is used by default.

3. Enter Debug mode: Click on the RUN icon.

4. The red and blue LEDs will vary brightness depending on how you move the board. Try moving it slowly.

Display X and Y angles using the P&E CDC COM Port:

5. Determine from Windows Device manager the COM port used by OSBDM/OSJTAG CDC Serial Port.

6. Enter this into your favourite terminal program (such as PuTTY) and set the speed to 115200 Baud.

7. The angle the board is positioned is displayed in degrees for both the X and Y axis:

8. The next page describes how to view these variables using Serial Wire Viewer:

http://kex.nxp.com/
http://kex.nxp.com/en/welcome
http://kex.nxp.com/en/summary
http://kex.nxp.com/en/configs

 Copyright © 2016 ARM Ltd. ARM Limited or its affiliates. All rights reserved.

NXP Kinetis Cortex-M4 Lab with ARM
®
 Keil™ MDK toolkit www.keil.com/NXP

43

6) Displaying Serial Wire Viewer Information on a Kinetis Expert Project:

A ULINK2, ULINKpro or a J-Link arte needed to display Serial Wire information. P&E do not currently support SWV. We

will display the Xangle and Yangle variables in the Logic Analyzer window. First, we need to make them global. This

tutorial uses a ULINK2. To use a ULINKpro or a J-Link you must configure uVision differently. Recall you must stop the

program to update the Trace Records window. ULINK2 updates this window while the program runs.

Connection:

1. Connect a ULINK2 (or ULINKpro or a J-Link) to the K60D100M board and power both with USB cables.

2. If the program is running: stop it and Exit Debug mode.

Configure SWV:

1. Select the Target Options icon . Select the Debug tab.

2. Select the debugger you are using in the Use: box: This is for ULINK2:

3. In the Initialization File field, remove any text that is present. If using Trace Port with a ULINKpro a file is needed.

4. Click on Settings on the right side of the target Options window. The Cortex-M Target Driver Setup window opens.

5. Set SWJ and SW as shown here: JTAG does not support SWV.

6. If everything is working correctly, you should now see a valid IDCODE and Device Name in the SW Device box.

If you do not, you must correct this before continuing.

7. Select the Trace tab. Select Core Clock: to 96 (96 MHz). Select Trace Enable.

TIP: To find Core Clock frequency: Enter the global variable SystemCoreClock in a Watch window and run the program.

8. Unselect EXCTRC to minimize potential SWO overflows. This might not be needed. You can experiment later .

9. Click OK twice to close the Target configuration windows.

Add Two Global Variables to display in Logic Analyzer and Watch windows:

1. In Bubble.c, there are two interesting variables xAngle and yAngle that we want to display. These are local

variables and hence cannot be displayed in the Logic Analyzer or Watch windows.

2. Declare two global variables near line 66 and 67. unsigned int XANGLE=0; and unsigned int YANGLE=0;

3. At the bottom of bubble.c near line 66 add these two assignment lines:

4. Click on File/Save All or

5. Build the files. There will be no errors or warnings.

6. Enter Debug mode:

7. In the main µVision Debug menu, select View and enable Periodic Window Update.

8. Click on RUN. The program will be running with the red and blue LEDs changing when the board is moved.

Add the XANGLE and YANGLE global variables to LA and Watch 1:

9. Right click on XANGLE and select Add XANGLE to… and select Logic Analyzer. Repeat for Watch 1.

10. Right click on YANGLE and select Add YANGLE to… and select Logic Analyzer. Repeat for Watch 1.

TIP: If an error results when adding counter to the LA, the most probable cause is SWV is not configured correctly.

11. In the LA, click on Setup and set Max: in Display Range to 90 or 0x5A for both variables. Click on Close.

12. In Zoom, set scaling for about 0.5 seconds.

13. The variables change as the board is rotated:

 Copyright © 2016 ARM Ltd. ARM Limited or its affiliates. All rights reserved.

NXP Kinetis Cortex-M4 Lab with ARM
®
 Keil™ MDK toolkit www.keil.com/NXP

44

1) Serial Wire Viewer and ETM Instruction Trace Summary:

Serial Wire Viewer can see:

 Global variables.

 Static variables.

 Structures.

 Peripheral registers and physical memory – just read or write to them.

 Can’t see local variables. (just make them global or static).

 Can’t see DMA transfers – DMA bypasses CPU and SWV by definition.

Serial Wire Viewer displays in various ways:

 PC Samples.

 Data reads and writes.

 Exception and interrupt events.

 CPU counters.

 Timestamps.

 ITM for printf.

ETM Trace is good for:

 Trace adds significant power to debugging efforts. Tells where the program has been.

 A recorded history of the program execution in the order it happened as opposed to the way the program was

written.

 Trace can often find nasty problems very quickly. Weeks or months can be replaced by minutes.

 Especially where the bug occurs a long time before the consequences are seen.

 Or where the state of the system disappears with a change in scope(s).

These are the types of problems that can be found with a quality ETM trace:

 Pointer problems. Illegal instructions and data aborts (such as misaligned writes).

 Code overwrites – writes to Flash, unexpected writes to peripheral registers (SFRs), a corrupted stack.

How did I get here ?

 Out of bounds data. Uninitialized variables and arrays.

 Stack overflows. What causes the stack to grow bigger than it should ?

 Runaway programs: your program has gone off into the weeds and you need to know what instruction caused this.

Is very tough to find these problems without a trace. ETM trace is best for this.

 Communication protocol and timing issues. System timing problems.

 ETM facilitates Code Coverage, Performance Analysis and program flow debugging and analysis.

For information on Instruction Trace (ETM) please visit www.keil.com/nxp for other labs discussing ETM.

http://www.keil.com/nxp

 Copyright © 2016 ARM Ltd. ARM Limited or its affiliates. All rights reserved.

NXP Kinetis Cortex-M4 Lab with ARM
®
 Keil™ MDK toolkit www.keil.com/NXP

45

2) Document Resources: See www.keil.com/NXP

Books:

1. NEW! Getting Started with MDK 5: Obtain this free book here: www.keil.com/gsg/

2. There is a good selection of books available on ARM: www.arm.com/support/resources/arm-books/index.php

3. µVision contains a window titled Books. Many documents including data sheets are located there.

4. A list of resources is located at: www.arm.com/products/processors/cortex-m/index.php

Click on the Resources tab. Or select the Cortex-M processor you want in the Processor panel on the left.

5. Or search for the Cortex-M processor you want on www.arm.com.

6. The Definitive Guide to the ARM Cortex-M0/M0+ by Joseph Yiu. Search the web for retailers.

7. The Definitive Guide to the ARM Cortex-M3/M4 by Joseph Yiu. Search the web for retailers.

8. Embedded Systems: Introduction to Arm Cortex-M Microcontrollers (3 volumes) by Jonathan Valvano

9. MOOC: Massive Open Online Class: University of Texas: http://users.ece.utexas.edu/~valvano/

Application Notes:

10. NEW! ARM Compiler Qualification Kit: Compiler Safety Certification: www.keil.com/safety

11. Using Cortex-M3 and Cortex-M4 Fault Exceptions www.keil.com/appnotes/files/apnt209.pdf

12. CAN Primer: www.keil.com/appnotes/files/apnt_247.pdf

13. Segger emWin GUIBuilder with µVision™ www.keil.com/appnotes/files/apnt_234.pdf

14. Porting mbed Project to Keil MDK™ 4 www.keil.com/appnotes/docs/apnt_207.asp

15. MDK-ARM™ Compiler Optimizations www.keil.com/appnotes/docs/apnt_202.asp

16. GNU tools (GCC) for use with µVision https://launchpad.net/gcc-arm-embedded

17. RTX CMSIS-RTOS Download https://github.com/ARM-software/CMSIS_5

18. Barrier Instructions http://infocenter.arm.com/help/topic/com.arm.doc.dai0321a/index.html

19. Lazy Stacking on the Cortex-M4: www.arm.com and search for DAI0298A

20. Cortex Debug Connectors: www.keil.com/coresight/coresight-connectors

21. Sending ITM printf to external Windows applications: www.keil.com/appnotes/docs/apnt_240.asp

22. FlexMemory configuration using MDK www.keil.com/appnotes/files/apnt220.pdf

23. Sending ITM printf to external Windows applications: www.keil.com/appnotes/docs/apnt_240.asp

24. NEW! Migrating Cortex-M3/M4 to Cortex-M7 processors: www.keil.com/appnotes/docs/apnt_270.asp

25. NEW! ARMv8-M Architecture Technical Overview https://community.arm.com/docs/DOC-10896

Useful ARM Websites:

1. NEW! CMSIS Standards: https://github.com/ARM-software/CMSIS_5 and www.arm.com/cmsis/

2. ARM and Keil Community Forums: www.keil.com/forum and http://community.arm.com/groups/tools/content

3. ARM University Program: www.arm.com/university. Email: university@arm.com

4. mbed™: http://mbed.org

Sales In Americas: sales.us@keil.com or 800-348-8051. Europe/Asia: sales.intl@keil.com +49 89/456040-20

Keil Distributors: See www.keil.com/distis/ DS-5 Direct Sales Worldwide: orders@arm.com

Keil Technical Support in USA: support.us@keil.com or 800-348-8051. Outside the US: support.intl@keil.com.

For comments, additions or corrections please email bob.boys@arm.com

http://www.keil.com/gsg/
http://www.arm.com/support/resources/arm-books/index.php
http://www.arm.com/products/processors/cortex-m/index.php
http://www.arm.com/
http://users.ece.utexas.edu/~valvano/
http://www.keil.com/safety
http://www.keil.com/appnotes/files/apnt209.pdf
http://www.keil.com/appnotes/files/apnt_247.pdf
http://www.keil.com/appnotes/files/apnt_234.pdf
http://www.keil.com/appnotes/docs/apnt_207.asp
http://www.keil.com/appnotes/docs/apnt_202.asp
https://launchpad.net/gcc-arm-embedded
https://github.com/ARM-software/CMSIS_5
http://infocenter.arm.com/help/topic/com.arm.doc.dai0321a/index.html
http://www.arm.com/
http://www.keil.com/coresight/coresight-connectors
http://www.keil.com/appnotes/docs/apnt_240.asp
http://www.keil.com/appnotes/files/apnt220.pdf
http://www.keil.com/appnotes/docs/apnt_240.asp
http://www.keil.com/appnotes/docs/apnt_270.asp
https://community.arm.com/docs/DOC-10896
https://github.com/ARM-software/CMSIS_5
http://www.arm.com/cmsis/
http://www.keil.com/forum
http://community.arm.com/groups/tools/content
http://www.arm.com/
mailto:university@arm.com
http://mbed.org/
mailto:sales.us@keil.com
mailto:sales.intl@keil.com
http://www.keil.com/distis/
mailto:orders@arm.com
mailto:support.us@keil.com
mailto:support.intl@keil.com

 Copyright © 2016 ARM Ltd. ARM Limited or its affiliates. All rights reserved.

NXP Kinetis Cortex-M4 Lab with ARM
®
 Keil™ MDK toolkit www.keil.com/NXP

46

3) Keil Products and contact information: See www.keil.com/NXP

Keil Microcontroller Development Kit (MDK-ARM™) for Kinetis processors:

 MDK-Lite™ (Evaluation version) 32K Code and Data Limit - $0

 New MDK-ARM-CM™ For all Cortex-M series processors only – unlimited code limit

 New MDK-Plus™ MiddleWare Level 1. ARM7™, ARM9™, Cortex-M, SecureCore®.

 New MDK-Professional™ MiddleWare Level 2. For details: www.keil.com/mdk5/version520.

Keil Middleware includes Network, USB, Graphics and File System. www.keil.com/mdk5/middleware/

USB-JTAG adapter (for Flash programming too)

 ULINK2 - (ULINK2 and ME - SWV only – no ETM)

 ULINK-ME – sold only with a board by Keil or OEM

 ULINKpro - Cortex-Mx SWV & ETM trace

You can use the OS-JTAG on the Kinetis Tower board. For Serial Wire Viewer (SWV), a ULINK2, ULINK-ME

or a J-Link is needed. For ETM support, a ULINKpro is needed. OS-JTAG does not support either SWV or

ETM debug technology.

Call Keil Sales for more details on current pricing. All products are available.

For the ARM University program: go to www.arm.com/university Email: university@arm.com

All software products include Technical Support and Updates for 1 year. This can be renewed.

Keil RTX™ Real Time Operating System

 RTX is provided free as part of Keil MDK. It is the full version of RTX – it is not restricted or crippled.

 No royalties are required and is very easy to use. It has a BSD license.

 RTX source code is included with all versions of MDK.

 Kernel Awareness visibility integral to µVision.

For the entire Keil catalog see www.keil.com or contact Keil or your

local distributor.

For Linux, Android, bare metal (no OS) and other OS support on NXP

i.MX and Vybrid series processors please see DS-5 at

www.arm.com/ds5/ and www.keil.com/ds-mdk.

For more information:

Sales In Americas: sales.us@keil.com or 800-348-8051. Europe/Asia: sales.intl@keil.com +49 89/456040-20

Keil Technical Support in USA: support.us@keil.com or 800-348-8051. Outside the US: support.intl@keil.com.

For comments or corrections please email bob.boys@arm.com.

For more information: www.arm.com/cmsis, www.keil.com/forum and http://community.arm.com/groups/tools/content

http://www.keil.com/mdk5/version520
http://www.keil.com/mdk5/middleware/
http://www.arm.com/university
http://www.keil.com/
http://www.arm.com/ds5/
mailto:sales.us@keil.com
mailto:sales.intl@keil.com
mailto:support.us@keil.com
mailto:support.intl@keil.com
mailto:bob.boys@arm.com
http://www.arm.com/cmsis
http://www.keil.com/forum
http://community.arm.com/groups/tools/content

