NXP lab: Cortex-M3 Training with serial Wire Viewer D KEIL

An ARM® Company

LPC1768: Keil MCB1700 evaluation board

Fall 2009 Version 1.3 by Robert Boys, bob.boys@arm.com

Introduction:

The purpose of this lab is to introduce you to the NXP Cortex™-M3 processor using the Keil MDK-ARM™ Microcontroller
Development Kit featuring uVision®. MDK contains an excellent NXP simulator. We will not use the simulator in favor of
Serial Wire Viewer (SWV) on the LPC1768. At the end of this tutorial, you will be able to confidently work with these
packages and try the examples. The Keil MDK™ you will be using supports all NXP ARM processors including ETM
support. Check the Keil Device Database® on www.keil.com/dd for NXP processor support.

SWYV allows real-time (no CPU cycles stolen) display of memory and variables, data reads and writes, exception events and
program counter sampling plus some CPU event counters. ETM adds all the program counter values and is controlled
with triggers and filters. SWV is supported by the Keil ULINK2, ULINK-ME and Segger J-Link adapters. ETM Trace is
supported with either the ULINKPro or Signum JtagJetTrace.

We will be using uVisiong but you can use pVisiong if you prefer. The example project files are initially in pVision3 format
and will be converted to uVision4 with the originals backed up. The two versions use different formats for the project files.
There have been no major changes the way uVision works so there is no steep learning curve to endure.

Keil MDK comes in an evaluation version that limits code and data size to 32 Kbytes. Nearly all Keil examples will compile
within this 32K boundary. The addition of a license number will turn it into the full, unrestricted version. Contact Keil
sales for a temporary full version license if you require this to evaluate Keil MDK toolset. Keil also provides RL-ARM.

This package includes the source files for RTX RTOS, TCP/IP stack, CAN drivers, Flash file system and USB drivers.

Software Installation:

This document was written for Keil MDK 3.8 with the uVisiong add-on available from the Keil website. You can use either
uVision 3 or uVision 4 but some of the menu locations have changed. In October 2009, MDK 4.0 will be released. This
major update contains only uVision4. Do not confuse uVision4 with MDK 4.0. The number “4” is a coincidence

If you have a previous version of MDK do not uninstall it; just install the new version on top. Your previous uVision
settings and files will then be preserved. For a clean install, erase your project directories.

The example files will compile without a license for MDK as they are all well within the 32K limit.

If you are using a Segger J-Link, you do not need to install any additional files. J-Link Version 6 and later support Serial
Wire Viewer with MDK. Keil also supports the Segger J-Trace for ETM trace capabilities.

Index:
1. Blinky example using the Keil MCB1700 board and ULINK2 2
2. Watch and Memory Windows and how to use them 2
3. RTX_Blinky with RTX RTOS example 4 SIKEIL ULINK 2.
4. RTX Kernel Awareness example using Serial Wire Viewer 5
5. Logic Analyzer: graphical data using Serial Wire Viewer 6
6. Serial Wire Viewer (SWV) and how to use it 7
Data Reads and Writes 7
Exceptions and Interrupts 8
PC Samples (program counter samples) 9
7. ETM Trace: capture all the program counter values 9
8. ITM (Instruction Trace Macrocell) 10
9. Watchpoints 11
10. Creating your own project 12
11. CAN (Controller Area Network) 13
12. Serial Wire Viewer summary 13
13. Keil Products 14
14. Keil supports these NXP products and contact information 14

NXP LPC1700 Lab © 2009 Keil™ All rights reserved www.keil.com

http://www.keil.com/dd

1) Blinky example program using the Keil MCB1700 and ULINK2 or ULINK-ME:
Now we will connect up a Keil MDK development system using real target hardware and a ULINK2 or ULINK-ME.

1. Connect the equipment as pictured here.

g S M
2. Start uVisiong by clicking on its desktop icon. =
1. Select Project/Open Project.

2. Open the file
C:\Keil\ARM\Boards\Keil\MCB1700\Blinky\Blinky.Uv2.

3. Make sure “LPC1768 Flash” is selected.

LPC1 768 Flash " This is where you select the
Simulator or to execute a program in RAM or Flash.

4. Compile the source files by clicking on the Build icon.
5. Program the LPC1700 flash by clicking on the Load icon:

LOAD

¥4 Progress will be indicated in the Output Window.

6. Enter the Debug mode by clicking on the Debug icon. qQ Select OK if the Evaluation Mode box appears.
Note: You only need to use the Load icon to download to FLASH and not to program the simulator or RAM.

7. Click on the RUN icon. Note: you stop the program with the STOP icon. Q
In this simple example the LEDs on the MCB1700 will now blink in succession.

8. When you have observed the program running click on Stop & and exit debug mode @Q for the next step.
Now you know how to compile a program, load it into the LPC1700 Flash and run it and stop it.
2) Watch and Memory Windows and how to use them:

The Watch and memory windows will display updated variable values in real-time. It does this through the ARM
CoreSight debugging technology that is part of NXP Cortex-M3 processors. It is also possible to “put” or insert values into
these memory locations in real-time. It is possible to “drag and drop” variables into windows or enter them manually.

1. Enter the Debug mode by clicking on the Debug icon. Q Click on the RUN icon.
2. Inthe source file Blinky.c is the global variable SysTickCnt near line 16.

3. Double click it to block it and drag ‘n drop to the Watch 1 window. You can also enter the variable manually by
double-clicking or pressing F2 as shown below and using Ctrl-C and Ctrl-V copy and paste or typing the variable.

TIP: To Drag ‘n Drop into a tab that is not active, pick up the variable and hold it over the tab you want to open; when it
opens, move your mouse into the window and release the variable.

4. SysTickCnt will be entered and immediately will be displayed and
updated in real-time as shown here in this screen shot: ickEnt

<double-click or F2 to add:

You can insert a number in a Watch or Memory window in real-time:
5. Double-click on the value field for SysTickCnt in the Watch window.
6. When it is highlighted, enter 0xo or just 0 and press Enter.
7. SysTickCnt will be set to zero or any other number you enter.

How It Works:

uVision uses CoreSight technology to read or write memory locations without stealing any CPU cycles. This is nearly
always non-intrusive and does not impact the program execution timings. Remember the Cortex-M3 is a Harvard
architecture. This means separate instruction and data buses. While the CPU is fetching instructions at full speed, there
is plenty of time for the CoreSight debug module to read or write values without stealing any CPU cycles.

(F4Call Stack |,;’;"§|Locals |,;‘§€T|Watch1 | Mermory 1 |_IESymboIs |

The only time this will be intrusive is in the unlikely event the program running on the CPU and uVision reads or writes to
the same memory location at exactly the same. Then the CPU will be stalled for only one clock cycle. In practice, this cycle
stealing never happens.

NXP LPC1700 Lab © 2009 Keil™ All rights reserved www.keil.com

How to view Local Variables in the Watch or Memory windows:
8. Stop the program by clicking on the Stop icon.
9. Enter the local variables num and dir from main() in Blinky.c to Watch 1.
10. Both are entered as “not in scope” because the PC is probably not in main().
11. Start the program by clicking on the Run icon.

12. num and dir change to ????????. Set a breakpoint on the second belay(500); in main() around line 51 or 52. The
program will soon stop on this hardware breakpoint.

TIP: Remember you can set breakpoints on-the-fly in the Cortex-M3 !
13. num and dir display values as shown in the second Watch 1 window as shown here:

14. Each time you click RUN, these values are updated.

MHame Walue
: B A } o SpsTickCnt 0x000E1EES
How to view these variables updated in real-time: 0%00000001
. _ . i
All you need to do is to make num and dir static ! i Ao YR
1. In the declaration for num and dir add static like this and
recompile:
int main (void) {
static int num = -1- Facall stack |£§ILocals |£§|Watch1 | | Memory 1 |_IESymbols |
static int dir = 1;

2. Exit debug mode. TIP: You can edit files in edit or debug mode, but can compile them only in edit mode.

H _;4_

3. Compile the source files by clicking on the Build icon. . Hopefully they compile with no errors or warnings.

LOAD

4. To program the Flash click on the Load icon. ¥#. A progress bar will be at the bottom left.

TIP: To program the Flash automatically when you enter Debug mode select Options For Target AN , select the
Utilities tab and select the “Update Target before Debugging” box.

5. Enter Debug mode. Q You will have to re-enter the variables in the Watch 1 window. Drag ‘n Drop them in is
the fastest way. (this has been fixed in the next release to make pVision remember the settings)

6. Remove the breakpoint you previously set and click on RUN. Can use Debug/Kill All Breakpoints to do this.
7. All three variables will now update in real-time. TIP: You can now drag these over while the program is running,.

Memory window:

1. Drag ‘n Drop SysTickCnt into the Memory window or enter in Mermory 1

manually. Address: ISysTickEnt D ﬂ

2. Note the value of SysTickeCnt is displaying its address in Memory 1 0x0001B045: FF FF FF FF FF FF FF FF IF

Loy . s s . . Ox0001ECO4E: FF FF FF FF FF FF FF FF FF
as if it is a pointer. This is useful to see what address a pointer is UwO0D1iEDS7: FF FF FF FF FF FF FF FF FF

pointing at but this not what we want to see at this time. Ox0001BO60: FF FF FF FF FF FF FF FF FF
.) Ox0001EQ060: FF FF FF FF FF FF FF FF FF
3. Add an ampersand “&” in front Ofthe Varlable name and press Enter. Ox0O001EO7Z: FF FF FF FF FF FF FF FF FF

Now the address is shown (0x1000000C) and its data contents. Ox0001BO7E: FF FF FF FF FF FF FF FF FF

. Ox0001EB0S4: FF FF FF FF FF FF FF FF FF -
Right click in the memory window to see the options as shown below. =
|.;}.jCaII Stack |gg§Locals |;§§Watch 1 | Mermory 1 | JESymbols

4. Stop the CPU and exit debug mode for the next step. @ and @Q

Decimal
Unsigned 4
Signed 3 Char
Ink
Ascii
Add :I&S Shart
[ESE W Float ar
0x10000000 pouble Lang
O0x10000015 aooooo
Ox10000024 add "SwsTickint' ko, .. » jOOC0O0O0
M 1 NNNNNE M=o 0N

NXP LPC1700 Lab © 2009 Keil™ All rights reserved www.keil.com

3) RTX_Blinky Example Program with Keil RTX RTOS: A Stepper Motor example

Keil provides RTX, a full feature RTOS. RTX is included for no charge as part of the Keil MDK full tool suite. It can have
up to 255 tasks and no royalty payments are required. If source code is required, this is included in the Keil RL-ARM™
Real-Time Library which also includes USB, CAN, TCP/IP networking and a Flash File system. This example explores the
RTOS project. Keil will work with any RTOS. An RTOS is merely another program that gets compiled.

TIP: You can also run this program with the simulator.

1. Start uVisiong by clicking on its icon on your Desktop if it is not already running.
Select Project/Open Project.
Open the file C:\Keil\ARM\Boards\Keil\MCB1700\RTX_ Blinky\Blinky.Uv2.

4. Make sure “MCB1700” is selected in the Target window and not Simulator. MCE1700 z

TIP: This is just the name of the target project. Any name can be used to distinguish different setups.

LOAD

6. To program the Flash manually, click on the Load icon. ##. A progress bar will be at the bottom left.
7. Enter the Debug mode by clicking on the debug icon. &)}

Click on the RUN icon.
The LEDs will blink indicating the waveforms of a stepper motor driver. This will also be displayed on the LCD
screen. Click on STOP &@.

Revisiting the Configuration Wizard for RTX:
1. Click on the RTX_ Conf CM.c source file tab as shown below on the left.

2. Click on Configuration Wizard at the bottom and your view will change to the Configuration Wizard.
3. Open up the individual directories to show the various configuration items available.
4. See how easy it is to modify these settings here as opposed to finding and changing entries in the source code.
5. This is a great feature as it is much easier changing items here than in the source code.
6. You can create Configuration Wizards in any source file with the scripting language as used in the Text Editor.
7. This scripting language is shown below in the Text Editor as comments starting such as a </h> or <i>.
8. The new uVisiong System Viewer windows are created in a similar fashion.
" [# RTX_Conf_Cr.c] v X | Binky.c,” [£] RTX_Conf_M.c | - x
3312 #izzgi ieoggiigzg . j Expandall | Collapse sl | Help
083 #endif Option | Value
024 = Task Definitions
085 Number of concurrent running tasks 7
0BE Mumber of tasks with user-provided stack [n]
Hi=r Task, stack size [bytes] z00
088 // <i» Enable Round-Robin Task switchinc - Check for the stack overflow v
039 #ifndef O3_ROBIN -~ Run in privileged mods r
090 tdefine OE ROBIN 1 J L Mumber of user timers 1}
091 #endif - 5 SysTick Timer Configuration
092 ' Timer clock value [Hz] F2000000
093 . o - e il T oy - Timer tick value [us] 10000
\t:>:‘:'" oo _'_i'_""_{__s_i _\'_:' &F.0und-Robin Task switchi [+
034 /7y <ix D ong a task will exe L — s
0% s/ <i» Default: 5
095 #ifndef 05 _ROBINTOUT
097 $define 05_ROBINTOUT 5
nae fendif -
\Jiln'lm = —'IJ Text Edilor _ Configuration Wizard
Text Editor Configuration Wizard

TIP: uVision4 windows can be floated anywhere. You can restore them by selecting Window/Reset Views to default.

NXP LPC1700 Lab © 2009 Keil™ All rights reserved www.keil.com

4) RTX Kernel Awareness using Serial Wire Viewer

Users often want to know the number of the current operating task and the status of the other tasks. This information is
usually stored in a structure or memory area by the RTOS. Keil provides a Task Aware window for RTX. Other RTOS

companies also provide awareness for uVision.

1. Run RTX_ Blinky by clicking on the Run icon. You
must be in Debug mode to do this.

2. Open Debug/OS Support and select RTX Kernel. Note
these values are updated in real-time using the CoreSight
technology as used in the Watch and Memory windows.

3. Click on the Event Viewer tab. There is probably no data.
Event Viewer: Configuring the Serial Wire Viewer:

In order to get this working we have to activate the Serial Wire
Viewer section of pVision.

1. Stop the CPU and exit debug mode.

Click on the Options icon &X next to the target box.

Select the Debug tab and then click the Settings box next to
ULINK Cortex Debugger dialog.

4. Inthe Debug window as shown here, make sure SWJ is
checked and Port: is set to SW and not JTAG.

Click on the Trace tab to open the Trace window.
Set Core Clock: to 72 MHz and select Trace Enable.
Unselect the Periodic and EXCTRC boxes as shown here.

Click on OK twice to return to puVision. The Serial Wire
Viewer is now configured in pVision.

® N o v

9. Enter Debug mode and click on Run to start the program.
10. Open Debug/OS Support and select RTX Kernel again.
11. Note the values are updated with the program running.

12.
13.

Click on the Event Viewer tab. The next window opens up.

This window displays task events in a graphical format as
shown in the RTX Kernel window below. You probably
have to change the Range to about 5 seconds by clicking on
the Out or In button.

TIP: View/Periodic Window Update must be selected !

TIP: To find the Core frequency select Peripherals/Clocking and
Power Control/Clock Generation Schematic. Open this window
now to see it. This is a very useful window. If you open this after
RESET and before run you can see the basic frequency. This
window can track changes in the PLL.

Cortex-M3 Alert: The LPC1700 will update all RTX information
in real-time on a target board due to its Serial Wire Viewer and
read/write capabilities as already described. You will not have to
stop the program to view this data. No CPU cycles are used. Your
program runs at full speed. You will find feature very useful !

TIP: Cortex-Mo processors do not have Serial Wire Viewer or
ETM facilities. It is possible to use a LPC1700 to emulate a Cortex-
Mo. Mo executable code will run on a M3 without modification.

This technique will provide you with advanced debugging power
including ETM trace to find those difficult bugs.

NXP LPC1700 Lab © 2009 Keil™

All rights reserved

B
Active Tasks | System | Event Viewer |
TID | Task Mame | Priority | State | Delay | EventValue | Event Mask | Stack Load |
2 phaset 1 WAIT_AND 040000 00001 2%
3 phaseB 1 WAIT_AND 040000 00001 2%
4 phaseC 1 WAIT_DLY 43 3%
5 phaseD 1 WAT_DLY 43 3%
6 clock 1 WAT_DLY 1 3%
7 led 1 WAT_DLY EE] 2%
255 o3 idle_demon 0 RUNNING i3
x
Debug | Trace | Flach Dowrload |
~ULINK USB - JTAG/SW Adapler SW Devic
Serial Nox [+V1447C9E = IDEODE [Device Mame [sz
SWDIO | & 0x2BA0477 ARM CoreSight Sw-DP]
ULINK Versior: [OLINKZ * oresid |
Dievice Family: |Cortex-t Down
Fimuere Versiar: [¥1.37 pulomaic Detection I0/CaDE
I Swil For: IE ! Warual Canfiguration Device Mame l—
tar Clack: | 1MHz 'I Add Delete I Update: IR len
~Debug
Connect & Reset Options - Cache Options Dowrnload Options
CDnﬂect.INormal j Reset IHW RESET j [¥ Cache Code ¥ “erify Code Download
¥ Reset after Cannect [V Cache Memary | | [Download to Flash
x
Debug T1a%e | Flach Dawrload |
Core Clock: [72.000000 MHz ¥ Trace Enable
 Trace Port Timestamp: Trace Event
Serial'wire Output - UART/MNRZ 'I ¥ Enable Prescaler: (1 + I CPI: Cycles per Instruction
Sl Clok Presoaler [57 Frbo— W B e iz
I SLEEP: Sleep Cycles
¥ Autodetect Prescaler. 102416 * r
LSU: Load Store Urit Cycles
SO OEse| US| (i I~ Periodic Peiiod: [<Disabled> | | | FOLD: Folded Instuctions
I~ on Data R/ Sample I EXCTRC: Exception Tracing
~ITH Stimuiuis Por
3 Poit 24 23 Port 16 15 Part 8 7 Part 1}
Enable: |0«FFFFFFFF 172 17 2 7 7 7 v ol 17 7 7 7 7 o2 vl o 0 7 7 o ol 2 7 v v
Privilege: |0x00000008 Port 31.24 7 Port 23.16 [~ Pot15.8 [Part7.0 [~
Cancel Help I
X
Active Tasksl Gystem Event Viewer |
bir Time: Max Time:; Range: Grid: Zoom:
| 0119673 ¢ | 8560842 5 | 10.00000 5 | 0.500000 5 In All ‘SEII ¥ Rurring
Init
phased | [[1
phaseB 1 oo oo
phaseC » [[
phasell » []
f=1sT1 0 TR TTR VIR VIR VAR AN VAR VAN VAN THNN TR TR T TN TR TR 1]
led m T O O | R I N......
Idle
o R R R I A R A I R R A IR O
00s 5.000000 s 10.00000 =
o | |

www.keil.com

5) Logic Analyzer Window: view variables real-time in a graphical format:

uVision has a graphical Logic Analyzer window. Variables will be displayed in real-time using the Serial Wire Viewer in

the LPC1700. RTX_Blinky uses four tasks to create the waveforms. We will graph these four waveforms.

LED 1

1. Stop the program and exit debug mode.
2. Add 4 global variables unsigned int phasea through unsigned int phased to Blinky.c as shown here:
3. Add 2 lines to each of the four tasks Task1 through Task4 in Blinky.c as 08 | #detine LED D 0
shown below: phasea=1; and phasea=0; :the first two lines are shown 029 | #define LED_CLE
added at lines 082 and 085 (just after LED_On and LED_ Off function calls. . neigned int phasea;
For each task, add the corresponding variable assignment statements phasea, 032 | unsigned int phaseb:
phaseb, phasec and phased. 033 | unsigned int phasec;
. i . . . 034 | unsigned int phased;
4. We do this because in this simple program there are not enough variables to 035
connect to the Logic Analyzer. The program is too simple. ggg A Hommmm o S
* unction "signal fu
TIP: The Logic Analyzer can display static and global variables, structures and 03B S Ao

arrays.

5.

It can’t see locals: just make them static. To see peripheral registers merely read or write to them.

- Lofp
(s Program the Flash ¥4

Build the project.

You can run the program at this point.

Open View/Analysis Windows and select Logic Analyzer or select

the LA window on the toolbar.

Enter the Variables into the Logic Analyzer:

and enter debug mode qQ .

076
077

0739

075/ # - -

* Task 1 'phased':

* - -

Dhaze A output

D?8E|_t,ask roid phasel (void) {

for (::) {

OxfLff) ;

A

AE

8. Click on the Blinky.c tab. Block phasea, click, hold and drag up 080 o3_evt_walt_and (0x0001,
to the Logic Analyzer tab (don’t let go yet!) . ;Eg;:: R
9. When it opens, bring the mouse down anywhere into the Logic o Trn arEiten myy el
Analyzer window and release. 085 phasea = 0;
. . 086 i
10. Repeat for phaseb, phasec and phased. These variables will be 0 |
listed on the left side of the LA window as shown. Now we have neg -
to adjust the scaling.
11. Click on the Setup icon and click on each of the four variables and set the Max. in the Display Range: area to 0x3.
12. Click on Close to go back to the LA window.
13. Using the OUT and In buttons set the range to 20 seconds. Move the scrolling bar to the far right if needed.
14. You will see the following waveforms appear. Click to mark a place See 252 s below. Place the cursor on one of
the waveforms and get timing and other information as shown in the inserted box labeled phasec:
| Elinky.c r RT%_Conf_CM.c ® Logic Analyzer] v X
in Time: Max Time: Range: Girid: Zoam: Code; Setup MindMax
Setup..|[Erpon .|| 1989633 [26187285 [2000000s [1000000 [n | [out][ai][5e]]
03— : : : : : : : : : : : :
e L oL o

Ox3—

phaseb

DKU_| : T

Ou3—

phasec

A

F—

Ou3—

phaszed

O

¢ | phasec

o | Time:
|| Oldvalue:

oo
242.0000 =

K

L |PCH:

i Mewalue:

Mouse Pos
2474955 5

o

1
OXFFFFFFFF

Cursor
0,000000 5
o]

1]
O 000000

Delka |
247.4956 5 = 0,00404047 Hz | |
0 1

1

——
25200005

262.0000 ¢

10

TIP: You can also enter these variables into the Watch and Memory windows to display them in real-time.

NXP LPC1700 Lab © 2009 Keil™

All rights reserved

www.keil.com

6) Serial Wire Viewer (SWV) and how to use it:
Data Reads and Writes:
You have configured Serial Wire Viewer (SWV) in Section 4 under Event Viewer: Configuring the Serial Wire Viewer:

Now we will examine some of the features available to you. SWV works with uVision3 or 4 and a ULINK2, ULINK-ME or
a Segger J-Link V 6 or higher. SWV is included with MDK and no other equipment must be purchased.

Everything shown here is done without stealing any CPU cycles and is completely non-intrusive. A user program runs at
full speed and needs no code stubs or instrumentation software added.

1. Use RTX_ Blinky from the last exercise.

B

2. Enter Debug mode and run the program. Becorcs

Excaptions

3. Select View/Trace/Records or click on the Trace icon and select Records. o=

4. The Trace Records window will open up as shown here:

5. The ITM entries are the data from x
the RTX Kernel Viewer Wthh uses Type I Ot I Mum I Address I Data I PC I Dly I Cycles I Time[s] |£
Port 31 as shown under Num. To ITM 3 04H 2022043195 26.09643326

his off sel b b ITM 3 05H 22943738 28.09644082

turn this off select Debug/Debug Data wiite 10000030H 00000001 2022130278 28.09914275
Settings and click on the Trace tab. iy a e oTIseree Zmdamians
Unselect the ITM Stimulus Port 31, ITH 7 06H 2028703195 2817643326

N T ITM 3 FFH J02EAIGAGE 2817914535

Port 0, EXCTRC and Perlo@c if set. ITH 3 D5H MERO4I 265943475
TIP: Port o is used for a printf. ITM 7 04H 2058943851 28.59644251

Data Wiite 1000002CH 000D0000H J0FIIWIM 2859915144

6. Select On Data R/W Sample. ITM 3 OEH 2059139115 2559915438
ITM 31 FFH 2059333910 2860185386

; IT™ 31 OEH 20G4703195 2867643326

7. Click on OK to return. ITM 3 FFH 20F4GIG46E 28.67914535
: : ITM ol 05H 2094943195 29.09643326

8. Click on the RUN icon. ITM 3 02H 94943738 2909644082
. Data Wiite 100000244 000DOO0TH J9EII/A5L 2909914242

9. Double-click on the Trace records ITH 7 06H 2096136742 2909914919
window to clear it. ITM 31 FFH 20953T5E 2910185453

ITM 31 OEH 2100703135 2917643328 o

10. Only Data Writes will appear now.
TIP: You could have right clicked on the Trace Records window to filter these frames out another way.

What Is This ? x
1. When Variables are entered in the Type I Ot I Mum I Address I Diata I PC I Dily I Cycles I Time(z] |;|
. D ata Wit 10000030H 0DODOOOMH DOOOOPDOH 5916895256 B217914244
Logic Analyzer (remember phasea Data wiite 10000020H 000ODOOOH O0OOO7B2H X 5352898372 8267915100
through phased ?), any reads and D ata ‘write 10000024H ODOOODOMH OODOO73AH % 5989898222 8317914197
. .) Data Wit 10000030H 0DOODDOOH OOOOOFE4H X GO24899450 BIE79ISH17
writes will appear in Trace Records. Data Wirite 10000028H 000DOOOTH OOODO7ECH % GO72575595 84.34132772
Data Wit 10000024H ODOODDODH OOOOOP4EM X GOYEB982E6 B4.67914258
2. The Address column shows where Data wiite 1000007CH 000DOOOTH OODOOVSEH X 6144418244 85.33914228
: Data Wit 10000028H 0ODOOODODH OOOOOFSOH X 6180419454 B5.83915908
the four variables are located. Data Wiite 10000030H OOODOOOIH 000O07DOH B2IGHE242 6E 3914205
D ata ‘write 1000002CH ODOODDOOH OOOOOFBZH % E252418866 8683915032
3. The Data column are the data values Data wite 100000244 OOOOOOCMH OOODO73&H % G280418216 67.33014189
Written to phasea through phased. [ata Write 100000304 00000000H 000007E 4H ® B324419456 a47.83915911
4. PCisthe address of the instruction
causing the writes. You activated it
by selecting On Data R/W Sample.
5. The Cycles and Time(s) columns are <

when these events happened.

TIP: You can have up to four variables in the Logic Analyzer
and subsequently displayed in the Trace Records window.

. . . . task: Ix [T Case Sensitive
TIP: If you read from a variable — this will also be displayed.
MHame Addresz | Tupe I;I
TIP: If you select View/Symbol Window you can see where &3 Runtie Libray r
the addresses of the variables. This window is shown here Tl By S ot i
displaying the addresses in Blinky.c. p e — it
. 0x10000028 i
TIP: The next version of uVision will display the source and g (0000020 i
assembly code in a new trace window. @ 0+10000030 wint
. . . @ ook 010000010 wirt 5
Note: You must have Browser Information selected in the T
gaCall atack. |‘:;;ILocals |,<;;;lWatch 1 Memory 1 | Igsymbols |

Options for Target/Output tab for the Symbol Browser to
function.

NXP LPC1700 Lab © 2009 Keil™ All rights reserved www.keil.com

Exceptions and Interrupts:

The LPC1700 family has many interrupts and it can be difficult to determine when they are being activated. SWV on the
LPC1700 makes this easy.

1. Open Debug/Debug Settings and select the Trace tab.

2. Unselect On Data R/W Sample, PC Sample and ITM Ports 31 and 0.
3. Select EXCTRC as shown here: x|
. . Deb T
4. Click OK twice. a5)
5. The Trace Records should still be open. Double B Chest | IGENNAIN) il e [ime Eniiz
Click on lt to clear it. — Trace Port Timestamp: Trace Event:
. Serial"ire Output - UART/MRZ j ¥ Enable Prescaler: |1 - I CPI: Cycles per Instruction
6. Click RUN to start the program. WD Clock Proscaor | B2 — ™ EXC: Exception overhsad
. . . . ™ SLEEF: Sleep Cycles
You will see a window similar to the one below 7 utodetect Prescaler [102616 =] | | [~ a1 | oad Stere Ui Cocles
W]th Exceptions frames_ ST CIOCk:I 1 L) ™ Periodic Perind'l <Dizabled: ™ FOLD: Folded Instructions
- [~ on Data RAY Sample ¥ EXCTRC: Exception Tracing
What Is This ?
r~ ITH Stimulus Part
1 You can see two exceptions happening e il Part 24 23 Part 16 15 Part 8 7 Part 0
: : Enatle:[UTFFFFFFF | [WM RRRRRNRR RYRRRRRT MRRPReRT
[] Entry: When the exception enters. Plivilege:IDkDDUUUUDB Port 31.24 [Paort 2216 [Part15.8 [Pat 7.0 [
= EXit: When it exits or returns.
* Return: When all the exceptions have returned [oc [cocel |
including any tail-chaining.
Num 11 is SVCall from the RTX calls. x|
Num 15 is the Systick timer. R IR e e e e S B =
. E tion E it n FO303356 0.97643550
4. In my example you can see one data write Evoeption Fetur 0 % 70310854 097652964
. Exception Enty ® 1 kS 70310854 097653964
from the Logic Analyzer. EvceptionEnty % 11 ¥ 70310854 097653964
. . . Exception Retun = 0 = 70310854 0.97653964
E tion E b 1 70501625 0.97918924
5. Note everythmg 18 tlmeStamped' E:EZEJEEEEF 1 70501741 0.97919085
. . E ion A 0 ® 70508448 097928400
6. The “X” in Ovf is an overflow and some data cht:iilf?itne r 10000024H 00DODOOIH Ko 70508443 0.97928400
was 1OSt The “X” in Dly means the Exception Retun = 0 k4 70508448 0.97328400
o Exception Entiy " TOESTHE 0.93130854
1 Exception Exit 1 TOB37E3 0.98191015
;tlmeStan%ps gre d.elayed because tOO muc}l Exception R eturn 0 kS 70701082 095135347
information is belng fed out the SWO pin. ExceptionRetum % 0 X 70701082 0.98155347
Exceptinn En_tl_u 15 71022848 093642844
TIP: The SWO pin is one pin that all SWV information |ficaeis.., 19 U L oo
is fed out. There are limitations on how much i I i e o
information we can feed out this one pin. These
exceptions are happening at a very fast rate.
= -
Records
1. Select View/Trace/Exceptions or click on the Trace icon and select Exceptions. s
Counters
2 .Thfe next window OPlfnS up and more S
lp Ormatlon about t e exceptlons are Mum | Mame | Count | Total Time: | bdin Time [n | Max Timelnl bdin Time Dutl hd a8 Time Dutl First Time [s] | Last Time [g] -
listed as shown. 2 KM] s
3 HardFault o Os
3. Note the number of times these have g MelManege O >
e 1 =1 u Falt 1] 1]
happer.led undeF Cqunt' Tl:lls 18 Very i S\j’ac?ai - bl 338 4835 us 1E17 us 16.292 uz 55,597 us 559,492 me 0.97641921 2659914124
useful information in case interrupts 12 Dbater ; o
come too fast or slow. }g Eiigéku 25054 14.0043 me 40S6us 7B9Fus 9932ms 9995ms 0.99542844 26.61642835
. . 17 Ex=t/RO 1 1] 1]
4. ExtIRQ are the peripheral interrupts. 16 twRn2 0 2
19 ExtlR0 3 1} Oz
5. You can also clear this trace window 2 EwRdd ; os
-clicki 1 22 ExROE i i
by double-clicking on it. 2 Edrqe 0 o -

6. All this information is displayed in
real-time and without stealing CPU cycles !

TIP: Num is the exception number: RESET is 1. External interrupts start at Num 16. For LPC1768, 41 is CAN IRQ. This
is found in the LPC17xx Users Manual. Num 41 is also known as 41-16 = External IRQ 25.

NXP LPC1700 Lab © 2009 Keil™ All rights reserved www.keil.com

PC Samples:

Serial Wire Viewer can only display a sampling of the program counter. To capture all of the PCs use the ETM trace. ETM
is perfect to find problems associated with program flow such as “I went into the weeds and how did I get here?”.

SWYV can display at best every 64t instruction. It is better to keep this number as low as possible to avoid overloading the
Serial Wire Output (SWO) pin.

1. Open Debug/Debug Settings and select the Trace tab.

2. Unselect EXCTRC, On Data R/W Sample and select Periodic in the PC Sampling area.
3. Click on OK twice to return to the main screen.
4. Close the Exception Trace window and leave Trace Records open. Double-click to clear it.
5. Click on RUN and this window opens: |
X
6' MOSt Of the PC Samples are OlDE Wthh 1S Type [0t | Mum [Address | Data | [FIC | Dy | Cycles | Time[s :I
a branch to itself and is part of the RTOS. FC Sample 000001DEH 1931373772 2682463572 —!
PC Sample 000001 DEH 1931390156 2582486328
PC Sampl 000001DEH 1931406540 26.62509083
7. Scroll down to see some other code as I PL Sample D000 DEH 1931422924 2662531839
; . PC Sample D00001DEH 1931439308 26.8255453
.dld .here.. Cle‘arl'y, the CPU spends most of PC Sample DDDDOF14H 1931455692 26.82577360
its time in this tlght loop. FLC Sample 00000F20H 1931472076 26.82600106
PC Sample DDON0F22H 1931483460 2682622851
: : PC Sample DODODE1CH 1931504844 25.62645617
8. Note some instructions near oF1A. I P Sample OO0NOF22H 1AREAZIE 2B EZEREITY
; ; PC Sampl DDOD0F22H 1931537612 26.62691128
opened the disassembly window to show PL Sample DODODF3H 193155399 26.62713683
that not all the PCs were captured. FL Sample 00000F20H 1931570380 2682736639
. PC Sample DO000ACH 1931566764 26.62753334
Between F1A and F20 in Trace Records, PC Sarnpl O0000F 22H 1931E03148 26.82782150
. PC Sample DDON0F22H 1931619532 26.92804308
there is a space of 16,384 CPU cycles that PC Sample 00000F2Z2H 1931635916 2682827661
: : ; ; PC Sample 000001 DEH 1931EE2300 2682850417
are missed. Not all instructions executein |gz3%¢ ey T
one cycle, but clearly many were missed. PL Sample 000001 DEH 1931685068 2662695928 |

9. Still, PC Samples can give you some idea of where your program is; especially if it
is caught in a loop (like at ox1DE).

0x00000F14 2513 LDR r0, [pc,#76] ; E0x0D0000FGS -
0x00000F1C 6081 STR ri, [£0, #0x0E]
G2z while (LPC_S33P1->3R & (1 << 4)]: /% Wait for transfer to finish Lr

0x00000F1E BFOO HOP

7) ETM Trace: (You need a 0x00000F20 4811 LDR 0, [pe, §68] ; BOxO000DOFES

ULINKPro or JtagJetTrace for this step) o o rln e ig';ggfxw

. 0x00000FZ5 D1FA BNE 0x00000FZ0

ETM prOVl(:]‘eS all the program Coul:lte.r 83: return (LPC_S33P1->DRj; /* Return received wvalue */

values and is espe(na]ly useful for timing OXOOOOOFZ A 480F LDR o, [pc,zﬁﬂj : B0x00000F 68

. 0x00000F2ZC 6880 LDR 0, [£0, #0x08]

issues or where how a problem was caused 0%0D000FZE B2CO UZTE rD,:0

: : : B4: 3
disappears. ETM is a recording of all PC O s a7 ox .
ValueS. 144: static _ inline woid wr_reg [unsigned char reg, unsigned short wal) { =
BE 3

In the screen below all the program
counters starting at 0xF1A and ending at 0xF30 are recorded with ETM. Compare this to the disassembly listing above.
Clearly the program flow is apparent: there is a green circle opposite every oxF24.

Note the timestamp indicating the number of CPU cycles for each instruction. Note the disassembled instructions as well
as the source lines.

You need a ULINKPro, Segger J-Link or a Signum JtagJetTrace to view ETM signals. This window is from Signum.

| Bliky.c | [AT% cof cMe | [£] alobe [[F] startup PCizccs | [RT b Trace - JTAGjet | v X
Control. I Emablel Start Hesumel Clear jlﬂuew j »| I Quew..| [Filer..| Fields. I Savs...l
LM [1M...| PC | Excpt | Disas | Source | TStamp [d1] [cyc] B
#4179-1 00000F1A 1IDR RO, [PC, #0x4c] LPC_SSP1-:DR = byte; +1 o
#4179-2 0ooo00F1c STR R1.[RO.#0=8] +1
#4179-3 00000F1E HOP while (LPC_SS5P1-3SR & (1 << 4)1): % +1
#4179.-4 aonooFzo 1DR RO.[PC.#0=44] +1
H4179-5 aonooFz2 1DR RO.[RO. #0x=c] +1
#4179-6 oo000oF2z4 TST RO, #0=10 +1
#4179-7 oooooFz2se ENE Oxfz0 +13
#4199 oooooFz2o 1DR RO, [PC.#0=44] +1
#4199-1 oooooFz22 1DR RO.[RO. #0=c] +1
#4199-2 0o000oF24 TST RO.#0=10 +1
#4199.-3 oonooF2ae EHE O=f20 +17
#4219 oooooFzo 1DR RO, [PC. #0=44] +1
#4219-1 ooooorzz 1DR RO, [RO. #0xc] +1
#4219-2 0ooooF24 TST RO.#0=x10 +1
#4219-3 oooooFz2a [-]1ERE 0=f20 +17
#4239 00000F2A 1DR RO.[PC.#0=3c] return (LPC_SSP1-:DRE): SR+l
#4239-1 oo0nooF2c 1DR RO.[RO.#0=8] +1
#4239-2 00000F2E TETE RO.RD +1
#4239-3 0o0o00F30 BX LR i +3 -
1| | »
Skatus; MotActive Last Sample #1048571 {100%) Trace Clock: 36.00MHz

NXP LPC1700 Lab © 2009 Keil™

All rights reserved

www.keil.com

8) ITM (Instruction Trace Macrocell)

Recall in Section 4) RTX Kernel Awareness on page 5 that we showed you can display information about the RTOS in real-
time. This is done through the ITM Stimulus Port 31. Port 0 is available for a printf type of instrumentation that requires
minimal use code. After the write to the ITM port, zero CPU cycles are required to get the data out of the processor and
into pVision for display.
1. Add this code to Blinky.c. A good place is right after the place where you declared the four phasex variables.
#define I1TM_Port8(n) (*((volatile unsigned char *)(0xEO0000000+4*n)))
2. Inthe task phaseA near line 90 enter these three lines:
ITM_Port8(0) = 0x35;
while (ITM_Port8(0) == 0);
ITM_Port8(0) = 0x0D;
while (ITM_Port8(0) == 0);
ITM_Port8(0) = OxO0A;
3. If necessary stop the program execution, exit debug mode and rebuild the source files.
4. Program the Flash memory and enter debug mode.

5. Open Debug/Debug Settings and select the Trace tab. Select ITM Port 0, Unselect ITM Poprt 31, EXTRC and
Periodic as shown:

Click on View/Serial Windows and select Debug (printf) Viewer and click on RUN.

In the printf viewer you will see the value “5”]
appear every few seconds. Detug Trace |
Trace Records Core Clock:l 72.000000 MHz ¥ Trace Enatle
: — Trace Port Timestamps Trace Ewenl
L. tOIt))en Debug/Debug Settlngs and SeleCt the Trace Seial Wire Dutput - UIART/NRZ j ’7|7 Enable Presca\er:|1 VI ™ CPI: Cycles per Instruction
ab. S0 Clock Prescaler: |_52 PC Sampling :: ;TEC:EEKCSTDHOEDVIEIhead
" Sleep Cpcles
2. Unselect On Data R/W Sample, PC Sample and W Autodetect Prescale (112616 =1 | | [| c1) | oot e Lk Coces
EXCTRC. Sw0 Clock: | 1161280 MHz [~ Periodic Period:| <Disabled> I~ FOLD: Folded Instiuctions
™ onData RAw Sample ™ EXCTRC: Exception Tracing
. Select ITM 31.
3 3 —ITH Stimulus Por
3 3 H Pait 24 23 Port 16 15 Port g8 7 Port 1)
4- Click OK twice. (2= ey 2 2 v = g il v o o v el o o e e e e el e o e e o
5 The Trace Records should still be open Open it if F’nvi\ege:leDUUUDUUS Part 31..24 [V Port 23,16 [Port15.8 [~ Port 7.0 ™
not. Double click on it to clear it.
Click RUN to start the program. [oK | [conel |

You will see a window similar to the one below with ITM and data write frames.
You may have to scroll to see any ITM o frames.

What Is This ? x

Type | val Mum | Address | Data | PC | Dlyl Cocles | Time[s] ;I

I'I"M 31 frames are from the RTX Kernel Awareness o o = e SSS—U—‘SEHM -
window. im 3 e Fiern sarone
. . ITH 31 FFH 34256501 5 47581251
Data Write frames are the writes to phasea through ITH a o 200 5eI0e
: I 31 0H 24303774 589310797
phased. These are here because they are entered in Datawiite 100000284 DO0OODDTH 224498303 5 53530976
the Logic Analyzer window. i 3 i e SooEnos
I 31 0EH 10063230 G97IN0N2
ITM o frames are our ASCII characters “5” and ITH 7l FFH SN 59T
. . ITH 31 0H 403033 B 3AIN0I92
carriage return and line feed. You can see these values | # 2H MG0FE 63T
. Data Wite 10000024H 0D0DDDOOH 0436917 £.39591829
in the Data column. ITM i 450498521 £.29581835
ITH 0 00H W 4BOS0Z617 6 33588968

|

ITM Conclusion ITH 0 04H X 40502617 G.39598360
I 31 0FH ¥ 4B0S02617 F.39588368
. . . . I 31 FFH JE0E3M31 629853221

The writes to ITM Stimulus Port 0 are intrusive and ITh 3 OEH 4BE0E3Z30 BATHOM2 | |

are usually one cycle. It takes no CPU cycles to get the
data out the LPC1700 processor via the Serial Wire Output pin.

Note the X in the Dly column. The three writes are too fast for the SWO and you can see the timing as shown in the Cycles
column are all the same. As mentioned before, this is a limitation of SWV. But SWYV is intensely useful for debugging.

Examination with an ETM Trace shows the total time to display the digit is 25 CPU cycles including the while wait time.
TIP: ITM_SendChar is a useful function you can use to send characters. It is found in the header core.CM3.h.

NXP LPC1700 Lab © 2009 Keil™ All rights reserved www.keil.com

9) Watchpoints:

LPC1700 processors have 8 hardware breakpoints. These breakpoints can be set on-the-fly without stopping the CPU.
Usually the debugger will take one and perhaps two breakpoints for its operations. The LPC1700 also has four
Watchpoints. Watchpoints can be thought of as conditional breakpoints. The Logic Analyzer uses watchpoints in its
operations. This means in uVision you must have two variables free in the Logic Analyzer to use watchpoints.

1. Stop the program and leave Debug mode.
2. Add this line in Blinky.c in the area where you declared phasea. This means we want this to be a global variable.
unsigned iInt pass = 0;

3. Intaski near where you entered the ITM write code, enter this line:
pass++;

4. Your result should look similar to the two segments displayed below.
5. Compile the project and program the

Flash | Blinky.c* r GLEDLE r RT% Conf CM.c rﬂ Lagic Analyzer v X
’ 029 #define LED_D LED 3 j

Enter Debug mode. 030 #define LED CLK LED 7
031 o

Remove the variables in the Logic 032 | unsigned int phasea;
. . . « 9 033 unsigned int phasehb:
Analyzer window by clicking on “Setup 034 unsigned int phasec;

and selecting the “Kill All” button. B e e——
. Cllck on Close tO I‘eturn. gg; #define T Porto(n) (*ii{volatile unsigned char *) (0xEC0000O0+4+4%n)))
033 id LED O [i d ch led) { -
9. Select the Debug tab and select [l E|‘"u e LI_I

Breakpoints or press Ctrl-B.
10. In the Expression box enter: pass==3. Select both Read and Write boxes.
11. Click on Define and your expression will be accepted as shown below:

12. Cth on Close' | Blinky.c* T GLCDue r RTa_Conf_CM.c rﬂ Logic Analyzer * X
13. Enter the variable pass to the 078L] = |
. . 073 * Task 1 '"phased': Phase A output
Watch_ wn_ldow by dragging and o L .
dropping it or enter manually. 081F]__task void phased (void) {
082 for (;:) ¢
14. Cllck on RUN 0a3 os_evt_walt_and (0x0001, Ox£fff): A% wait for an event flag 00001 -
084 LED On (LED_&);
085 rhasea=1:
15 Wﬁel_; pass equals 3 the program 086 signal funec (t_phaseBj; /% call common sicgmal function =/ J
Wi1ll Stop. 087 LED_Off [LED_A);
. . 088 rhasea=0:
16. That is how a Watchpoint works. 08 ITH Portd(n) - 0x3s;
030 while (ITM Port8(D) == 0j;
17. There are other types of 091 ITH_Ports(0) = 0x0b:
3 t d 032 while (ITM PortS(0) == 0;;
expressions you can enter and are - ITH Pores (0] = oxois
detailed in the Help button in the 094
. 035 H
Breakpoints box. = _
I Ll_l

TIP: You cannot set Watchpoints on-the-fly while the

program is running like you can with hardware _ =
breakpoints. Current Break points:
00: [A readwrite 0x00000000 len=4), ‘pass==3",
TIP: To edit a Watchpoint, double-click on it in the
Breakpoints window and its information will be dropped
down into the configuration area. Clicking on Define
will create another Watchpoint. You should delete the
old one by highlighting it and click on Kill Selected or try
the next TIP: l | 2
TIP: The small checkbox beside the expression allows AEES
you to temporarily unselect or disable a Watchpoint Expresson | I Fead T Wite
without deleting it. count [1 = SR
Command: I I1 =] [~ Objects
Define | [Kil Selezted kil | Cose | Help

NXP LPC1700 Lab © 2009 Keil™ All rights reserved www.keil.com

10) Creating a new project: Using the Blinky source files: optional

All examples provided by Keil are pre-configured. All you have to do is compile them. You can use them as a starting
point for your own projects. However, we will start this example project from the beginning to illustrate how easy this
process is. We will use the existing source code files so you will not have to type them in. Once you have the new project
configured; you can build, load and run the Blinky example as usual. You can use this process to create any new project
from your own source files created with pVision’s editor or any other editor.

Create a new project called Mytest:

1. With pVision running and not in debug mode, select Project/New uVision Project.
2. Inthe window Create New Project go to the folder C:\Keil\ARM\Boards\Keil\MCB1700.
3. Right click and create a new folder by selecting New/Folder. I named this new folder FAE.
4. Double-click on the newly created folder “FAE” to enter this folder as is shown below.
5. Name your project. I called mine Mytest. You can choose your own name but you will have to keep track of it.
6. Click on Save.
7. “Select Device for Target 1” shown here opens up. X
8. This is the Keil Device Database® which lists all the |
devices Keil supports (plus some secret ones). Vendor, NP loundsd by Phils]
9. Locate the NXP directory, open it and select LPC1768. ?u ;2;‘758
Note the device features are displayed b S
10. Cll(:k on OK' -£d LH7A404 || [RM 32-bit Cartex-M3 Microcontroller with MPLL. CPU clock up ta 100MHz « |
-9 Lrost ISy e 159 and iy g Fropntio 18P
. o . g s J Efikhg H}:&M,N‘gessted\/(r,gclored\nlDe“iptpEDonnHoHe;&HBgM iPE :
11. A window opens up asking if you want to insert the £ (s EBerne 10,100 HA Wi M eoce and edicaled DA,
N . . £ LPri7es USE 2.0 fullspeed Device contraller and Host/OTG controller with DMA,
default LPC17xx startup file to your project. Click on W itk AN 2105 it chaee. i UAE T, e it ol Hocemierace
% 2 . . . ﬂ LPC1765 el::'a us'egzeln el a;;ess, -T‘EE i SE[I:HI:’:EESI ace_si ntertace,
Yes . Thl.s Wl]l save you a.' great deal Of tlme’ £ LPC1766 EDUI 32‘5& TD\merstEitE ca‘pltzlr:;cAoagalel,l"SBtanhdald Fl‘\l\djhr?"fjl:ngﬁgock
12. In the Project Workspace in the upper left hand of - g\,zth;kT?Mg;‘ $}:§§'§I%1fﬁ.ﬁ‘§;ﬁg:%fg ﬁg?fg‘éﬁfui?f“e"
uVision, open up the folders by clicking on the “+” g Lo Eiﬁi?on“;‘\‘EJQ,ZEJEQ.?A";&%E;?lll‘n‘?,e\'»@paLLEﬁS’fn”t;.ﬁé?c'ﬁﬁﬁﬁﬁ'ér, e
. mstal oxcillator, 2 internal ogcillatar, - -
beside each folder. guroom ol [d (o
13. We have now created a project called Mytest and the
target hardware called Target 1 with one source file

startup_ LPC17xx.s.
14. Click once (carefully) on the name “Target 1” (or twice if not already highlighted) in the Project Workspace and
rename Target 1 to something else. I chose LPC1700 as shown above. Click once on a blank part of the Project

Workspace to accept this. Note the Target selector also i |
changes. Click on the + to open up the directory structure. Savein [FRE o + @k E-

You can create many target hardware configurations (] wytestampros
including a simulator and easily select them.

Select the source files:

1. Using MS Explore (right click on Windows Start icon), copy
blinky.c, core_cmg3.c and system_ LPC17xx.c from
C:\Keil\ARM\Boards\Keil\MCB1700\Blinky to the
Keil\MCB1700\FAE folder.

2. Inthe Project Workspace in the upper left hand of uVision,
right-click on “LPC1700” and select “Add Group”. Name this
new group “Source Files” and press Enter.

3. Right-click on “Source Files” and select Add files to Group

“SOUI’CG F“eS” | File narme: IMytssH j Save I
4. Select the file Blinky.c, core_cm3.c and system_ LPC17xx.c o TR = ;IJ

and click on Add and then Close. These will show up in the Project Workspace when you click on the + beside
Source Files..

5. Select Options For Target and select the Debug tab. Make sure ULINK Cortex Debugger is selected. Select this by
checking the circle just to the left of the word “Use:”.

6. At this point you could build this project and run it on your MCB1700 board.

This completes the exercise of creating your own project from scratch.

NXP LPC1700 Lab © 2009 Keil™ All rights reserved www.keil.com

11) CAN: Controller Area Network
For exercises using CAN for the LPC2300 and LPC1700 series please obtain the CAN Primer:
http://www.standardics.nxp.com/support/documents/microcontrollers/?search=CAN&type=article

12) Serial Wire Viewer Summary:

Serial Wire Viewer can see:
= Global variables.
= Static variables.
= Structures.
= Peripheral registers — just read or write to them.
= Can’t see local variables. (just make them global or static).
= Can’t see DMA transfers — DMA bypasses CPU and SWV by definition.

Serial Wire Viewer displays in various ways:
= PC Samples.
= Data reads and writes.
= Exception and interrupt events.
= CPU counters.
= Timestamps for these.

Trace is good for:
= Trace adds significant power to debugging efforts. Tells where the program has been.
= Arecorded history of the program execution in the order it happened.
= Trace can often find nasty problems very quickly.
= Weeks or months can be replaced by minutes.
= Especially where the bug occurs a long time before the consequences are seen.
= Or where the state of the system disappears with a change in scope(s).
= Plus - don’t have to stop the program. Crucial to some.

These are the types of problems that can be found with a quality trace:
* Pointer problems.
= Tllegal instructions and data aborts (such as misaligned writes).

= Code overwrites — writes to Flash, unexpected writes to peripheral registers (SFRs), corrupted stack.
How did I get here ?

» QOut of bounds data. Uninitialized variables and arrays.
= Stack overflows. What causes the stack to grow bigger than it should ?

* Runaway programs: your program has gone off into the weeds and you need to know what instruction caused
this. Is very tough to find these problems without a trace.

» Communication protocol and timing issues. System timing problems.
= Profile Analyzer. Where is the CPU spending its time ?
= Code Coverage. Is a certification requirement. Was this instruction executed ?

For complete information on CoreSight for the Cortex-M3: Search for DDI10314F_coresight_component_trm.pdf
on Www.arm.com.

NXP LPC1700 Lab © 2009 Keil™ All rights reserved www.keil.com

http://www.standardics.nxp.com/support/documents/microcontrollers/?search=CAN&type=article

13) Keil Products:

Keil Microcontroller Development Kit (MDK-ARM™)
= MDK with included RTX RTOS — $4,895 (MDK has a great simulator)
= MDK-ARM-B: 256K code limit, no RTOS — $2,895

Keil Real Time Library (RL-ARM™)
= RTX sources, Flash File, TCP/IP, CAN, USB driver libraries - $4,195

USB-JTAG adapter (for Flash programming too)
= ULINK2 - $395 (ULINK2 and ME - SWV only — no ETM)
= ULINK-ME — sold only with a board by Keil or OEM.
= ULINK-Pro - $1,395 — Cortex-M3 SWV & ETM trace (November 2009)

Note: USA prices. Contact sales.intl@keil.com for pricing in other countries.

14) Keil Supports these NXP Processors:
Please visit www.keil.com/dd for the latest list. For not yet released NXP products, contact Keil Technical Support or Sales.

ARM7/ARM9/Cortex Family

LH75400, LH75401, LH75410, LH75411, LH79520, LH79524, LH79525, LH7A400, LH7A404, LPC1751, LPC1752, LPC1754, LPC1756,
LPC1758, LPC1764, LPC1765, LPC1766, LPC1768, LPC2101, LPC2102, LPC2103, LPC2104, LPC2104/01, LPC2105, LPC2105/01,
LPC2106, LPC2106/01, LPC2109, LPC2109/01, LPC2114, LPC2114/01, LPC2119, LPC2119/01, LPC2124, LPC2124/01, LPC2129,
LPC2129/01, LPC2131, LPC2131/01, LPC2132, LPC2132/01, LPC2134, LPC2134/01, LPC2136, LPC2136/01, LPC2138, LPC2138/01,
LPC2141, LPC2142, LPC2144, LPC2146, LPC2148, LPC2194, LPC2194/01, LPC2210, LPC2210/01, LPC2212, LPC2212/01, LPC2214,
LPC2214/01, LPC2220, LPC2290, LPC2290/01, LPC2292, LPC2292/01, LPC2294, LPC2294/01, LPC2364, LPC2365, LPC2366,
LPC2367, LPC2368, LPC2377, LPC2378, LPC2387, LPC2388, LPC2420, LPC2458, LPC2460, LPC2468, LPC2470, LPC2478, LPC2880,
LPC2888, LPC2917, LPC2917/01, LPC2919, LPC2919/01, LPC2921, LPC2923, LPC2925, LPC2927, LPC2929, LPC2930, LPC2939,
LPC3130, LPC3131, LPC3180, LPC3220, LPC3230, LPC3240, LPC3250, SJA2010

Smart Card Family
MIFARE PRO X, SmartMX, WE Family

8051 Family

80/87C51, 80/87C52, 80C31, 80C31X2, 80C32, 80C32X2, 80C451, 80C51FA, 80C51RA+, 80C528, 80C550, 80C552, 80C554,
80C575, 80C652, 83/87C451, 83/87C524, 83/87C528, 83/87C550, 83/87C552, 83/87C554, 83/87C575, 83/87C652, 83/87C654,
83/87C750, 83/87C751, 83/87C752, 8XC51FA/8xL51FA, 8XC51FB/8XL51FB, 8XC51FC/8XL51FC, 8xC51MA2, 8xC51MB2,
8xC51MB2/02, 8xC51MC2, 8xC51MC2/02, 8xC51RA+, 8xC51RB+, 8xC51RC+, 8xC51RD+, 8XC52, 8XC54, 8XC58, P80/P87C51X2,
P80/P87C52X2, P80/P87C54X2, P80/P87C58X2, PBOC557E4, PBOC557E6, PBOC557E8, PB0OC562, PBOC591, PBOC592, PBOCES58,
P80CE560, PBOCE598, PBOCL31, PBOCL410, PBOCL51, PBOCL580, P83/87C654X2, P83/87C660X2, P83/87C661X2, P83/P87C557E8,
P83/P87CE560, P83/P89C557E4, P83/P89CES58, PB3C557E6, P83C562, P8B3C591, P83C592, PB3CE598, P83CL410, P83CL580,
P87C51RA2, PB7C51RB2, P87C51RC2, P87C51RD2, P87C591, P87CL52X2, P87CL54X2, P87CL888, P87LPC759, P87LPC760,
P87LPC761, P87LPC762, P87LPC764, P87LPC767, PB7LPC768, P87LPC769, P87LPC778, PBOC51RA2xx, PBOC51RB2HxX,
P89C51RB2xx, PB9C51RC2Hxx, PB9C51RC2xx, PB9C51RD2Hxx, PBOC51RD2xx, P89C51X2, P8BIC52X2, PB9C54X2, P8OC58X2,
P89C60X2, PBIC61X2, PBIC660, PBIC662, PBICE64, PBIC668, PBIC669, PBOC738, PBIC739, PBILPCI01, PBILPCI02, PBILPCI03,
P89LPC9O04, P89LPCO06, P8ILPCO07, PBILPCO08, PBILPC9102, P89LPC9103, P8ILPC9107, P8ILPCI12, PEILPCI13, P8ILPCI14,
P89LPC915, P89LPC916, P8ILPC917, P8ILPC920, P8I9LPCO9201, PBILPC921, P8ILPC9211, P8I9LPC922, P8I9LPC9221, PBILPC922A1,
P89LPC924, P89LPCY9241, P89LPC925, P89LPC9251, P8ILPC930, P8ILPCI9301, P8ILPCO31, P8ILPCO311, P8ILPCO31A1, P8ILPCO32,
P89LPC9321, P89LPC932A1, P89LPC933, P89LPC9331, P8OLPC934, P89LPC9341, P8ILPCI35, P8ILPCI351, PBILPCI36,
P89LPC9361, P89LPC938, P89LPC9401, P8ILPC9402, P8ILPC9408, P8ILPCO952, PBILPCO954, P8BILV51RB2, P89LV51RC2,
P89LV51RD2, P89V51RB2, P8O9V51RC2, P89V51RD2, P89V52X2, P89V6E60, PBIV662, PBIV6E64, PCD6001, PCD6002, SAAS645HL,
SAA5647HL, SAA5665HL, SAA5667HL, TDA8006, TDA8008, TDA8028, TDA8029

For more information:
Keil Sales In USA: sales.us@keil.com or 800-348-8051. Outside the US: sales.intl@keil.com
Keil Technical Supportin USA: support.us@keil.com or 800-348-8051. Outside the US: support.intl@keil.com.

For comments please email bob.boys@arm.com.

For the latest version of this document, contact the author, Keil Technical support or www.keil.com.

For Signum Systems: www.signum.com and Segger: www.segger.com.

NXP LPC1700 Lab © 2009 Keil™ All rights reserved www.keil.com

mailto:sales.intl@keil.com
http://www.keil.com/dd
mailto:sales.us@keil.com
mailto:sales.intl@keil.com
mailto:support.us@keil.com
mailto:support.intl@keil.com
mailto:bob.boys@arm.com
http://www.signum.com/
http://www.segger.com/

	Introduction:
	Software Installation:
	Index:
	14. Keil supports these NXP products and contact information 141) Blinky example program using the Keil MCB1700 and ULINK2 or ULINK-ME:
	In this simple example the LEDs on the MCB1700 will now blink in succession.
	2) Watch and Memory Windows and how to use them:
	3) RTX_Blinky Example Program with Keil RTX RTOS: A Stepper Motor example
	TIP: µVision4 windows can be floated anywhere. You can restore them by selecting Window/Reset Views to default.4) RTX Kernel Awareness using Serial Wire Viewer
	5) Logic Analyzer Window: view variables real-time in a graphical format:
	6) Serial Wire Viewer (SWV) and how to use it:
	7) ETM Trace: (You need a ULINKPro or JtagJetTrace for this step)
	8) ITM (Instruction Trace Macrocell)
	9) Watchpoints:
	10) Creating a new project: Using the Blinky source files: optional
	Create a new project called Mytest:
	11) CAN: Controller Area Network
	12) Serial Wire Viewer Summary:
	13) Keil Products:
	14) Keil Supports these NXP Processors:
	MIFARE PRO X, SmartMX, WE Family
	For more information:

